

AoPS Community

2011 Thailand Mathematical Olympiad

Thailand Mathematical Olympiad 2011

www.artofproblemsolving.com/community/c1123510

by parmenides51, AlastorMoody, oty, lehungvietbao

-	Day 1
1	Given a natural number $n \ge 3$. If p, q are primes, such that, $p \mid n!$ and $q \mid (n-1)! - 1$. Prove that, $p < q$
2	Find all functions $f : \mathbb{N} \to \mathbb{N}$ such that $f(2m + 2n) = f(m)f(n)$ for all natural numbers m, n .
3	Given a $\triangle ABC$ where $\angle C = 90^{\circ}$, D is a point in the interior of $\triangle ABC$ and lines AD , BD and CD intersect BC , CA and AB at points P , Q and R , respectively. Let M be the midpoint of \overline{PQ} . Prove that, if $\angle BRP = \angle PRC$ then $MR = MC$.
4	There are 900 students in an International School. There are 59 international boys and 59 inter- national girls. The Students are partitioned into 30 classrooms (each classrooms have equal number of student) and in each of the classrooms, the student will labelled number from 1 to 30. The Partition must satisfy at least one follow condition:
	- Any Two international boys in same classroom can't have consecutive numbers. - For every classroom, the student who is labelled 1 must be a boy.
	Prove that there are 2 classrooms, each of which has 2 international boys with their labels difference equal.
5	Find all n such that $n = d(n)^4$
	Where $d(n)$ is the number of divisors of n , for example $n = 2 \cdot 3 \cdot 5 \implies d(n) = 2 \cdot 2 \cdot 2$.
6	For any $0 \le x_1, x_2, \ldots, x_{2011} \le 1$, Find the maximum value of
	$\sum_{k=1}^{2011} (x_k - m)^2$
	where m is the arithmetic mean of m_1, m_2, \dots, m_{n-1}

where *m* is the arithmetic mean of $x_1, x_2, \ldots, x_{2011}$.

- Day 2

7 Let $a, b, c, d \in \mathbb{R}^+$ and suppose that all roots of the equation

$$x^5 - ax^4 + bx^3 - cx^2 + dx = 1$$

AoPS Community

8

2011 Thailand Mathematical Olympiad

are real. Prove

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} \le \frac{3}{5}$$

Given $\triangle ABC$ and its centroid G, If line AC is tangent to $\bigcirc (ABG)$. Prove that,

 $AB + BC \le 2AC$

9 Prove that, for all $n \in \mathbb{N}$

$$\frac{1}{1} + \frac{1}{3} + \frac{1}{5} + \ldots + \frac{1}{2n+1} \notin \mathbb{Z}$$

10 Does there exists a function $f : \mathbb{N} \longrightarrow \mathbb{N}$

f(m + f(n)) = f(m) + f(n) + f(n+1)

for all $m, n \in \mathbb{N}$?

- 11 In $\triangle ABC$, Let the Incircle touch \overline{BC} , \overline{CA} , \overline{AB} at X, Y, Z. Let I_A, I_B, I_C be A, B, C-excenters, respectively. Prove that Incenter of $\triangle ABC$, orthocenter of $\triangle XYZ$ and centroid of $\triangle I_A I_B I_C$ are collinear.
- 12 7662 chairs are placed in a circle around the city of Chiang Mai. They are also marked with a label for either 1st, 2nd, or 3rd grade students, so that there are 2554 chairs labeled with each label. The following situations happen, in order

- 2554 students each from the 1st, 2nd, and 3rd grades are given a ball as follows: 1st grade students receive footballs, 2nd grade students receive basketballs, and 3rd grade students receive volleyballs.

- The students go sit in chairs labeled for their grade

- The students simultaneously send their balls to the student to their left, and this happens some positive number of times.

A labelling of the chairs is called *lin-ping* if it is possible for all 1st, 2nd, and 3rd grade students to now hold volleyballs, footballs, and basketballs respectively. Compute the number of *lin-ping* labellings

AoPSOnline 🧔 AoPSAcademy 🧔 AoPS academy

© 2020 AoPS Incorporated 2

Art of Problem Solving is an ACS WASC Accredited School.