AoPS Community

Czech And Slovak Mathematical Olympiad, Round III, Category A 1957

www.artofproblemsolving.com/community/c1125102
by byk7

1 Find all real numbers p such that the equation

$$
\sqrt{x^{2}-5 p^{2}}=p x-1
$$

has a root $x=3$. Then, solve the equation for the determined values of p.
2 Consider a (right) square pyramid $A B C D V$ with the apex V and the base (square) $A B C D$. Denote $d=A B / 2$ and φ the dihedral angle between planes $V A D$ and $A B C$.
(1) Consider a line $X Y$ connecting the skew lines $V A$ and $B C$, where X lies on line $V A$ and Y lies on line $B C$. Describe a construction of line $X Y$ such that the segment $X Y$ is of the smallest possible length. Compute the length of segment $X Y$ in terms of d, φ.
(2) Compute the distance v between points V and X in terms of d, φ.

3 Find all real numbers α such that both values $\cot (\alpha)$ and $\cot (2 \alpha)$ are integers.
4 Consider a non-zero convex angle $\angle P O Q$ and its inner point M. Moreover, let $m>0$ be given. Construct a trapezoid $A B C D$ satisfying the following conditions:
(1) vertices A, D lie on ray $O P$ and vertices lie on ray $O Q$,
(2) diagonals $A C$ and $B D$ intersect in M,
(3) $A B=m$.

Prove that your construction is correct and discuss conditions of solvability.

