

AoPS Community

1983 Czech and Slovak Olympiad III A

Czech And Slovak Mathematical Olympiad, Round III, Category A 1983 www.artofproblemsolving.com/community/c1125225 by byk7

1 Let *n* be a positive integer and $k \in [0, n]$ be a fixed real constant. Find the maximum value of

$\left|\sum_{i=1}^{n}\sin(2x_i)\right|$

where x_1, \ldots, x_n are real numbers satisfying

$$\sum_{i=1}^n \sin^2(x_i) = k.$$

2 Given a triangle *ABC*, prove that for every inner point *P* of the side *AB* the inequality

$$PC \cdot AB < PA \cdot BC + PB \cdot AC$$

holds.

- 3 An 8 × 8 chessboard is made of unit squares. We put a rectangular piece of paper with sides of length 1 and 2. We say that the paper and a single square overlap if they share an inner point. Determine the maximum number of black squares that can overlap the paper.
- **4** Consider an arithmetic progression a_0, \ldots, a_n with $n \ge 2$. Prove that

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} a_k = 0.$$

5 Find all pair (x, y) of positive integers satisfying

$$\left|\frac{x}{y} - \sqrt{2}\right| < \frac{1}{y^3}.$$

6 Consider a circle k with center S and radius r. Denote M the set of all triangles with incircle k such that the largest inner angle is twice bigger than the smallest one. For a triangle $\mathcal{T} \in M$ denote its vertices A, B, C in way that $SA \ge SB \ge SC$. Find the locus of points $\{B \mid \mathcal{T} \in M\}$.