

AoPS Community

2011 Germany Team Selection Test

Germany Team Selection Test 2011

www.artofproblemsolving.com/community/c1126247 by matinyousefi, orl, Amir Hossein

- VAIMO 1

- 1 Two circles ω , Ω intersect in distinct points A, B a line through B intersects ω , Ω in C, D respectively such that B lies between C, D another line through B intersects ω , Ω in E, F respectively such that E lies between B, F and FE = CD. Furthermore CF intersects ω , Ω in P, Q respectively and M, N are midpoints of the arcs PB, QB. Prove that CNMF is a cyclic quadrilateral.
- **2** Let *n* be a positive integer prove that

$$6 \nmid \lfloor (\sqrt[3]{28} - 3)^{-n} \rfloor.$$

3 We call a function $f : \mathbb{Q}^+ \to \mathbb{Q}^+$ good if for all $x, y \in \mathbb{Q}^+$ we have:

 $f(x) + f(y) \ge 4f(x+y).$

a) Prove that for all good functions $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ and $x, y, z \in \mathbb{Q}^+$

$$f(x) + f(y) + f(z) \ge 8f(x + y + z)$$

b) Does there exists a good functions $f:\mathbb{Q}^+\to\mathbb{Q}^+$ and $x,y,z\in\mathbb{Q}^+$ such that

f(x) + f(y) + f(z) < 9f(x + y + z)?

-	VAIMO 2
1	A sequence x_1, x_2, \ldots is defined by $x_1 = 1$ and $x_{2k} = -x_k, x_{2k-1} = (-1)^{k+1}x_k$ for all $k \ge 1$. Prove that $\forall n \ge 1 \ x_1 + x_2 + \ldots + x_n \ge 0$. Proposed by Gerhard Wginger, Austria
2	Let $ABCDE$ be a convex pentagon such that $BC \parallel AE, AB = BC + AE$, and $\angle ABC = \angle CDE$. Let M be the midpoint of CE , and let O be the circumcenter of triangle BCD . Given that $\angle DMO = 90^{\circ}$, prove that $2\angle BDA = \angle CDE$.

Proposed by Nazar Serdyuk, Ukraine

AoPS Community

2011 Germany Team Selection Test

- **3** Vertices and Edges of a regular *n*-gon are numbered 1, 2, ..., n clockwise such that edge *i* lies between vertices $i, i + 1 \mod n$. Now non-negative integers $(e_1, e_2, ..., e_n)$ are assigned to corresponding edges and non-negative integers $(k_1, k_2, ..., k_n)$ are assigned to corresponding vertices such that: *i*) $(e_1, e_2, ..., e_n)$ is a permutation of $(k_1, k_2, ..., k_n)$. *ii*) $k_i = |e_{i+1} e_i|$ indexes mod *n*.
 - a) Prove that for all $n \ge 3$ such non-zero *n*-tuples exist.

b) Determine for each m the smallest positive integer n such that there is an n-tuples stisfying the above conditions and also $\{e_1, e_2, \ldots, e_n\}$ contains all $0, 1, 2, \ldots m$.

AoPS Online 🔯 AoPS Academy 🔯 AoPS & CADEMY