AoPS Community

Germany Team Selection Test 2011

www.artofproblemsolving.com/community/c1126247
by matinyousefi, orl, Amir Hossein

- VAIMO 1

1 Two circles ω, Ω intersect in distinct points A, B a line through B intersects ω, Ω in C, D respectively such that B lies between C, D another line through B intersects ω, Ω in E, F respectively such that E lies between B, F and $F E=C D$. Furthermore $C F$ intersects ω, Ω in P, Q respectively and M, N are midpoints of the $\operatorname{arcs} P B, Q B$. Prove that $C N M F$ is a cyclic quadrilateral.

2 Let n be a positive integer prove that

$$
6 \nmid\left((\sqrt[3]{28}-3)^{-n}\right\rfloor .
$$

$3 \quad$ We call a function $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$good if for all $x, y \in \mathbb{Q}^{+}$we have:

$$
f(x)+f(y) \geq 4 f(x+y)
$$

a) Prove that for all good functions $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$and $x, y, z \in \mathbb{Q}^{+}$

$$
f(x)+f(y)+f(z) \geq 8 f(x+y+z)
$$

b) Does there exists a good functions $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$and $x, y, z \in \mathbb{Q}^{+}$such that

$$
f(x)+f(y)+f(z)<9 f(x+y+z) ?
$$

- VAIMO 2

1 A sequence x_{1}, x_{2}, \ldots is defined by $x_{1}=1$ and $x_{2 k}=-x_{k}, x_{2 k-1}=(-1)^{k+1} x_{k}$ for all $k \geq 1$.
Prove that $\forall n \geq 1 x_{1}+x_{2}+\ldots+x_{n} \geq 0$.
Proposed by Gerhard Wginger, Austria
2 Let $A B C D E$ be a convex pentagon such that $B C \| A E, A B=B C+A E$, and $\angle A B C=\angle C D E$. Let M be the midpoint of $C E$, and let O be the circumcenter of triangle $B C D$. Given that $\angle D M O=90^{\circ}$, prove that $2 \angle B D A=\angle C D E$.
Proposed by Nazar Serdyuk, Ukraine

3 Vertices and Edges of a regular n-gon are numbered $1,2, \ldots, n$ clockwise such that edge i lies between vertices $i, i+1 \bmod n$. Now non-negative integers $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ are assigned to corresponding edges and non-negative integers $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ are assigned to corresponding vertices such that: $i)\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is a permutation of $\left.\left(k_{1}, k_{2}, \ldots, k_{n}\right) . i i\right) k_{i}=\left|e_{i+1}-e_{i}\right|$ indexes $\bmod n$.
a) Prove that for all $n \geq 3$ such non-zero n-tuples exist.
b) Determine for each m the smallest positive integer n such that there is an n-tuples stisfying the above conditions and also $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ contains all $0,1,2, \ldots m$.

