AoPS Community

Germany Team Selection Test 2012

www.artofproblemsolving.com/community/c1127095
by Tintarn, matinyousefi, orl, WakeUp

- VAIMO 1

1 Find the least integer k such that for any 2011×2011 table filled with integers Kain chooses, Abel be able to change at most k cells to achieve a new table in which 4022 sums of rows and columns are pairwise different.

2 Let Γ be the circumcircle of isosceles triangle $A B C$ with vertex C. An arbitrary point M is chosen on the segment $B C$ and point N lies on the ray $A M$ with M between A, N such that $A N=A C$. The circumcircle of $C M N$ cuts Γ in P other than C and $A B, C P$ intersect at Q. Prove that $\angle B M Q=\angle Q M N$.

3 Let a, b, c be positive real numbers with $a^{2}+b^{2}+c^{2} \geq 3$. Prove that:

$$
\frac{(a+1)(b+2)}{(b+1)(b+5)}+\frac{(b+1)(c+2)}{(c+1)(c+5)}+\frac{(c+1)(a+2)}{(a+1)(a+5)} \geq \frac{3}{2} .
$$

- VAIMO 2

1 Consider a polynomial $P(x)=\prod_{j=1}^{9}\left(x+d_{j}\right)$, where $d_{1}, d_{2}, \ldots d_{9}$ are nine distinct integers. Prove that there exists an integer N, such that for all integers $x \geq N$ the number $P(x)$ is divisible by a prime number greater than 20.

Proposed by Luxembourg
2 Let $A B C$ be an acute triangle. Let ω be a circle whose centre L lies on the side $B C$. Suppose that ω is tangent to $A B$ at B^{\prime} and $A C$ at C^{\prime}. Suppose also that the circumcentre O of triangle $A B C$ lies on the shorter $\operatorname{arc} B^{\prime} C^{\prime}$ of ω. Prove that the circumcircle of $A B C$ and ω meet at two points.

Proposed by Hrmel Nestra, Estonia
3 Determine all pairs (f, g) of functions from the set of real numbers to itself that satisfy

$$
g(f(x+y))=f(x)+(2 x+y) g(y)
$$

for all real numbers x and y.
Proposed by Japan

