Art of Problem Solving

AoPS Community

Problems from the 2018-2019 Fall SDPC. Middle School division does 1,2,3,5,6,7, High School division does 2,3,4,6,7,8.
www.artofproblemsolving.com/community/c1127630
by mira74

- \quad Session 1

1 An isosceles triangle T has the following property: it is possible to draw a line through one of the three vertices of T that splits it into two smaller isosceles triangles R and S, neither of which are similar to T. Find all possible values of the vertex (apex) angle of T.

2 Find all pairs of positive integers (m, n) such that $2^{m}-n^{2}$ is the square of an integer.
3 Let R be an 20×18 grid of points such that adjacent points are 1 unit apart. A fly starts at a point and jumps in straight lines to other points in R in turn, such that each point in R is visited exactly once and no two jumps intersect at a point other than an endpoint of a jump, for a total of 359 jumps. Call a jump small if it is of length 1 . What is the least number of small jumps? (The left configuration for a 4×4 grid has 9 small jumps and 15 total jumps, while the right configuration is invalid.)

4 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(f(x)-f(y))+2 f(x y)=x^{2} f(x)+f\left(y^{2}\right)
$$

for all real numbers x, y.

- \quad Session 2

5 For a positive integer that doesnt end in 0 , define its reverse to be the number formed by reversing its digits. For instance, the reverse of 102304 is 403201 . In terms of $n \geq 1$, how many numbers when added to its reverse give $10^{n}-1$, the number consisting of n nines?

6 Alice and Bob play a game. Alice writes an equation of the form $a x^{2}+b x+c=0$, choosing a, b, c to be real numbers (possibly zero). Bob can choose to add (or subtract) any real number to each of a, b, c, resulting in a new equation. Bob wins if the resulting equation is quadratic and has two distinct real roots; Alice wins otherwise. For which choices of a, b, c does Alice win, no matter what Bob does?

7 The incircle of $\triangle A B C$ touches $B C, C A, A B$ at D, E, F, respectively. Point P is chosen on $E F$ such that $A P$ is parallel to $B C$, and $A D$ intersects the incircle of $\triangle A B C$ again at G. Show that $\angle A G P=90^{\circ}$.

AoPS Community

8 Let $S(n)=1 \varphi(1)+2 \varphi(2) \ldots+n \varphi(n)$, where $\varphi(n)$ is the number of positive integers less than or equal to n that are relatively prime to n. (For instance $\varphi(12)=4$ and $\varphi(20)=8$.) Prove that for all $n \geq 2018$, the following inequality holds:

$$
0.17 n^{3} \leq S(n) \leq 0.23 n^{3}
$$

