AoPS Community

Germany Team Selection Test 2013

www.artofproblemsolving.com/community/c1127948
by matinyousefi, lyukhson

- VAIMO 1
$1 \quad n$ is an odd positive integer and x, y are two rational numbers satisfying

$$
x^{n}+2 y=y^{n}+2 x .
$$

Prove that $x=y$.
2 Given a $m \times n$ grid rectangle with $m, n \geq 4$ and a closed path P that is not self intersecting from inner points of the grid, let A be the number of points on P such that P does not turn in them and let B be the number of squares that P goes through two non-adjacent sides of them furthermore let C be the number of squares with no side in P. Prove that

$$
A=B-C+m+n-1 .
$$

3 Let $A B C$ be an acute-angled triangle with circumcircle ω. Prove that there exists a point J such that for any point X inside $A B C$ if $A X, B X, C X$ intersect ω in A_{1}, B_{1}, C_{1} and A_{2}, B_{2}, C_{2} be reflections of A_{1}, B_{1}, C_{1} in midpoints of $B C, A C, A B$ respectively then A_{2}, B_{2}, C_{2}, J lie on a circle.

- VAIMO 2

1 Two concentric circles ω, Ω with radii 8,13 are given. $A B$ is a diameter of Ω and the tangent from B to ω touches ω at D. What is the length of $A D$.

2 Call admissible a set A of integers that has the following property:
If $x, y \in A$ (possibly $x=y$) then $x^{2}+k x y+y^{2} \in A$ for every integer k.
Determine all pairs m, n of nonzero integers such that the only admissible set containing both m and n is the set of all integers.

Proposed by Warut Suksompong, Thailand
3 Let $n \geq 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{1,2, \ldots, n\}$ such that the sums of the different pairs are different integers not exceeding n ?

