Art of Problem Solving

AoPS Community

2019 Germany Team Selection Test

Germany Team Selection Test 2019

www.artofproblemsolving.com/community/c1128851
by matinyousefi, Neothehero, IndoMathXdZ, a1267ab

- VAIMO 1
$1 \quad$ Let \mathbb{Q}^{+}denote the set of all positive rational numbers. Determine all functions $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$ satisfying

$$
f\left(x^{2} f(y)^{2}\right)=f\left(x^{2}\right) f(y)
$$

for all $x, y \in \mathbb{Q}^{+}$
2 Let $A B C$ be a triangle with $A B=A C$, and let M be the midpoint of $B C$. Let P be a point such that $P B<P C$ and $P A$ is parallel to $B C$. Let X and Y be points on the lines $P B$ and $P C$, respectively, so that B lies on the segment $P X, C$ lies on the segment $P Y$, and $\angle P X M=$ $\angle P Y M$. Prove that the quadrilateral $A P X Y$ is cyclic.

3 Let n be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n+1$ squares in a row, numbered 0 to n from left to right. Initially, n stones are put into square 0 , and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with k stones, takes one of these stones and moves it to the right by at most k squares (the stone should say within the board). Sisyphus' aim is to move all n stones to square n.
Prove that Sisyphus cannot reach the aim in less than

$$
\left\lceil\frac{n}{1}\right\rceil+\left\lceil\frac{n}{2}\right\rceil+\left\lceil\frac{n}{3}\right\rceil+\cdots+\left\lceil\frac{n}{n}\right\rceil
$$

turns. (As usual, $\lceil x\rceil$ stands for the least integer not smaller than x.)

- VAIMO 2

1 Determine all pairs (n, k) of distinct positive integers such that there exists a positive integer s for which the number of divisors of $s n$ and of $s k$ are equal.

2 Does there exist a subset M of positive integers such that for all positive rational numbers $r<1$ there exists exactly one finite subset of M like S such that sum of reciprocals of elements in S equals r.

3 A point T is chosen inside a triangle $A B C$. Let A_{1}, B_{1}, and C_{1} be the reflections of T in $B C$, $C A$, and $A B$, respectively. Let Ω be the circumcircle of the triangle $A_{1} B_{1} C_{1}$. The lines $A_{1} T$, $B_{1} T$, and $C_{1} T$ meet Ω again at A_{2}, B_{2}, and C_{2}, respectively. Prove that the lines $A A_{2}, B B_{2}$, and $C C_{2}$ are concurrent on Ω.

Proposed by Mongolia

