www.artofproblemsolving.com/community/c1131451
by djmathman, alifenix-

- Day 1

1 The positive integers $a_{0}, a_{1}, a_{2}, \ldots, a_{3030}$ satisfy

$$
2 a_{n+2}=a_{n+1}+4 a_{n} \text { for } n=0,1,2, \ldots, 3028 .
$$

Prove that at least one of the numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{3030}$ is divisible by 2^{2020}.
2 Find all lists $\left(x_{1}, x_{2}, \ldots, x_{2020}\right)$ of non-negative real numbers such that the following three conditions are all satisfied:
$-x_{1} \leq x_{2} \leq \ldots \leq x_{2020} ;$
$-x_{2020} \leq x_{1}+1$;

- there is a permutation $\left(y_{1}, y_{2}, \ldots, y_{2020}\right)$ of $\left(x_{1}, x_{2}, \ldots, x_{2020}\right)$ such that

$$
\sum_{i=1}^{2020}\left(\left(x_{i}+1\right)\left(y_{i}+1\right)\right)^{2}=8 \sum_{i=1}^{2020} x_{i}^{3} .
$$

[i]A permutation of a list is a list of the same length, with the same entries, but the entries are allowed to be in any order. For example, $(2,1,2)$ is a permutation of $(1,2,2)$, and they are both permutations of $(2,2,1)$. Note that any list is a permutation of itself.[/i]

3 Let $A B C D E F$ be a convex hexagon such that $\angle A=\angle C=\angle E$ and $\angle B=\angle D=\angle F$ and the (interior) angle bisectors of $\angle A, \angle C$, and $\angle E$ are concurrent.

Prove that the (interior) angle bisectors of $\angle B, \angle D$, and $\angle F$ must also be concurrent.
[i]Note that $\angle A=\angle F A B$. The other interior angles of the hexagon are similarly described.[/i]

- Day 2

4 A permutation of the integers $1,2, \ldots, m$ is called fresh if there exists no positive integer $k<m$ such that the first k numbers in the permutation are $1,2, \ldots, k$ in some order. Let f_{m} be the number of fresh permutations of the integers $1,2, \ldots, m$.
Prove that $f_{n} \geq n \cdot f_{n-1}$ for all $n \geq 3$.
[i]For example, if $m=4$, then the permutation $(3,1,4,2)$ is fresh, whereas the permutation $(2,3,1,4)$ is not.[/i]

5 Consider the triangle $A B C$ with $\angle B C A>90^{\circ}$. The circumcircle Γ of $A B C$ has radius R. There is a point P in the interior of the line segment $A B$ such that $P B=P C$ and the length of $P A$ is R. The perpendicular bisector of $P B$ intersects Γ at the points D and E.
Prove P is the incentre of triangle $C D E$.
6 Let $m>1$ be an integer. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ is defined by $a_{1}=a_{2}=1, a_{3}=4$, and for all $n \geq 4$,

$$
a_{n}=m\left(a_{n-1}+a_{n-2}\right)-a_{n-3} .
$$

Determine all integers m such that every term of the sequence is a square.

