AoPS Community

Olympic Revenge 2004

www.artofproblemsolving.com/community/c1134244
by parmenides51, e.lopes
$1 \quad A B C$ is a triangle and D is an internal point such that $\angle D A B=\angle D B C=\angle D C A . O_{a}$ is the circumcenter of $D B C . O_{b}$ is the circumcenter of $D A C . O_{c}$ is the circumcenter of $D A B$. Show that if the area of $A B C$ and $O_{a} O_{b} O_{c}$ are equal then $A B C$ is equilateral.

2 If a, b, c, x are positive reals, show that

$$
\frac{a^{x+2}+1}{a^{x} b c+1}+\frac{b^{x+2}+1}{b^{x} a c+1}+\frac{c^{x+2}+1}{c^{x} a b+1} \geq 3
$$

$3 \quad A B C$ is a triangle and ω its incircle. Let P, Q, R be the intersections with ω and the sides $B C, C A, A B$ respectively. $A P$ cuts ω in P and $X . B X, C X$ cut ω in M, N respectively. Show that $M R, N Q, A P$ are parallel or concurrent.

4 Find all functions $f: R \rightarrow R$ such that for any reals $x, y, f\left(x^{2}+y\right)=f(x) f(x+1)+f(y)+2 x^{2} y$.
$5 \quad a_{0}=a_{1}=1$ and $a_{n+1} \cdot a_{n-1}=a_{n} \cdot\left(a_{n}+1\right)$ for all positive integers n .
prove that a_{n} is one integer for all positive integers n .
6 For any natural $n, f(n)$ is the number of labeled digraphs with n vertices such that for any vertex the number if in-edges is equal to the number of out-edges and the total of (in+out) edges is even. Let $g(n)$ be the odd-analogous of $f(n)$. Find $g(n)-f(n)$ with proof .

Dado n natural, seja $f(n)$ o nmero de grafos rotulados direcionados com n vrtices de modo que em cada vrtice o nmero de arestas que chegam igual ao nmero de arestas que saem eo nmero de arestas total do grafo par. Defina $g(n)$ analogamente trocando "par" por "mpar" na definio acima. Calcule $f(n)-g(n)$.
(Observao: Um grafo rotulado direcionado um par $G=(V, E)$ onde $V=\{1,2,, n\}$ e E um subconjunto de $\left.V^{2}-\{(i, i) ; 0<i<n+1\}\right)$.

