Art of Problem Solving

AoPS Community

www.artofproblemsolving.com/community/c1135095
by parmenides51, Abbas1 1235, fastlikearabbit, SHARKYKESA, math90, Mindstormer

- Day 1

1 Let q be a real number. Gugu has a napkin with ten distinct real numbers written on it, and he writes the following three lines of real numbers on the blackboard:
-In the first line, Gugu writes down every number of the form $a-b$, where a and b are two (not necessarily distinct) numbers on his napkin.
-In the second line, Gugu writes down every number of the form $q a b$, where a and b are two (not necessarily distinct) numbers from the first line.
-In the third line, Gugu writes down every number of the form $a^{2}+b^{2}-c^{2}-d^{2}$, where a, b, c, d are four (not necessarily distinct) numbers from the first line.

Determine all values of q such that, regardless of the numbers on Gugu's napkin, every number in the second line is also a number in the third line.

2 Let $A B C C_{1} B_{1} A_{1}$ be a convex hexagon such that $A B=B C$, and suppose that the line segments $A A_{1}, B B_{1}$, and $C C_{1}$ have the same perpendicular bisector. Let the diagonals $A C_{1}$ and $A_{1} C$ meet at D, and denote by ω the circle $A B C$. Let ω intersect the circle $A_{1} B C_{1}$ again at $E \neq B$. Prove that the lines $B B_{1}$ and $D E$ intersect on ω.

3 Consider the set of all integer points in Z^{3}. Sasha and Masha play such a game. At first, Masha marks an arbitrary point. After that, Sasha marks all the points on some a plane perpendicular to one of the coordinate axes and at no point, which Masha noted. Next, they continue to take turns (Masha can't to select previously marked points, Sasha cannot choose the planes on which there are points said Masha). Masha wants to mark n consecutive points on some line that parallel to one of the coordinate axes, and Sasha seeks to interfere with it. Find all n, in which Masha can achieve the desired result.

- Day 2

4 Let n be an odd integer. Consider a square lattice of size $n \times n$, consisting of n^{2} unit squares and $2 n(n+1)$ edges. All edges are painted in red or blue so that the number of red edges does not exceed n^{2}. Prove that there is a cell that has at least three blue edges.

5 Find the smallest positive number λ such that for an arbitrary 12 points on the plane $P_{1}, P_{2}, \ldots P_{12}$ (points may coincide), with distance between arbitrary two of them does not exceeds 1 , holds the inequality $\sum_{1 \leq i \leq j \leq 12} P_{i} P_{j}^{2} \leq \lambda$

AoPS Community

6 Find the smallest positive integer n or show no such n exists, with the following property: there are infinitely many distinct n-tuples of positive rational numbers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that both

$$
a_{1}+a_{2}+\cdots+a_{n} \quad \text { and } \quad \frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}
$$

are integers.

- Day 3

7 The prime number $p>2$ and the integer n are given. Prove that the number $p n^{2}$ has no more than one divisor d for which $n^{2}+d$ is the square of the natural number.

8 A sequence of real numbers a_{1}, a_{2}, \ldots satisfies the relation

$$
a_{n}=-\max _{i+j=n}\left(a_{i}+a_{j}\right) \quad \text { for all } \quad n>2017 .
$$

Prove that the sequence is bounded, i.e., there is a constant M such that $\left|a_{n}\right| \leq M$ for all positive integers n.

9 Let $A A_{1}, B B_{1}, C C_{1}$ be the heights of triangle $A B C$ and H be its orthocenter. Liune ℓ parallel to $A C$, intersects straight lines $A A_{1}$ and $C C_{1}$ at points A_{2} and C_{2}, respectively. Suppose that point B_{1} lies outside the circumscribed circle of triangle $A_{2} H C_{2}$. Let $B_{1} P$ and $B_{1} T$ be tangent to of this circle. Prove that points A_{1}, C_{1}, P, and T are cyclic.

- Day 4

10 Let $A B C$ be a triangle with $A H$ altitude. The point K is chosen on the segment $A H$ as follows such that $A H=3 K H$. Let O be the center of the circle circumscribed around by triangle $A B C, M$ and N be the midpoints of $A C$ and AB respectively. Lines $K O$ and $M N$ intersect at the point Z, a perpendicular to $O K$ passing through point Z intersects lines $A C$ and $A B$ at points X and Y respectively. Prove that $\angle X K Y=\angle C K B$.
$112 n$ students take part in a math competition. First, each of the students sends its task to the members of the jury, after which each of the students receives from the jury one of proposed tasks (all received tasks are different). Let's call the competition honest, if there are n students who were given the tasks suggested by the remaining n participants. Prove that the number of task distributions in which the competition is honest is a square of natural numbers.

12 Let n be a positive integer and $a_{1}, a_{2}, \ldots, a_{n}$ be integers. Function $f: \mathbb{Z} \rightarrow \mathbb{R}$ is such that for all integers k and $l, l \neq 0$,

$$
\sum_{i=1}^{n} f\left(k+a_{i} l\right)=0 .
$$

Prove that $f \equiv 0$.

