Art of Problem Solving

AoPS Community

www.artofproblemsolving.com/community/c1135233
by parmenides51, hajimbrak

- Day 1

1 Let O be the circumcenter of the triangle $A B C, A^{\prime}$ be a point symmetric of A wrt line $B C, X$ is an arbitrary point on the ray $A A^{\prime}(X \neq A)$. Angle bisector of angle $B A C$ intersects the circumcircle of triangle $A B C$ at point $D(D \neq A)$. Let M be the midpoint of the segment $D X$. A line passing through point O parallel to $A D$, intersects $D X$ at point N. Prove that angles $B A M$ and $C A N$ angles are equal.

2 In a football tournament, n teams play one round ($n: 2$). In each round should play $n / 2$ pairs of teams that have not yet played. Schedule of each round takes place before its holding. For which smallest natural k such that the following situation is possible: after k tours, making a schedule of $k+1$ rounds already is not possible, i.e. these n teams cannot be divided into $n / 2$ pairs, in each of which there are teams that have not played in the previous k rounds.

PS. The 3 vertical dots notation in the first row, I do not know what it means.
3 Find all triples (p, x, y) consisting of a prime number p and two positive integers x and y such that $x^{p-1}+y$ and $x+y^{p-1}$ are both powers of p.

Proposed by Belgium

- Day 2

4 A prime number $p>3$ is given. Prove that integers less than p, it is possible to divide them into two non-empty sets such that the sum of the numbers in the first set will be congruent modulo p to the product of the numbers in the second set.

5 For a sequence $x_{1}, x_{2}, \ldots, x_{n}$ of real numbers, we define its price as

$$
\max _{1 \leq i \leq n}\left|x_{1}+\cdots+x_{i}\right| .
$$

Given n real numbers, Dave and George want to arrange them into a sequence with a low price. Diligent Dave checks all possible ways and finds the minimum possible price D. Greedy George, on the other hand, chooses x_{1} such that $\left|x_{1}\right|$ is as small as possible; among the remaining numbers, he chooses x_{2} such that $\left|x_{1}+x_{2}\right|$ is as small as possible, and so on. Thus, in the i-th step he chooses x_{i} among the remaining numbers so as to minimise the value of

AoPS Community

2015 Ukraine Team Selection Test

$\left|x_{1}+x_{2}+\cdots x_{i}\right|$. In each step, if several numbers provide the same value, George chooses one at random. Finally he gets a sequence with price G.

Find the least possible constant c such that for every positive integer n, for every collection of n real numbers, and for every possible sequence that George might obtain, the resulting values satisfy the inequality $G \leq c D$.
Proposed by Georgia
6 Given an acute triangle $A B C, H$ is the foot of the altitude drawn from the point A on the line $B C, P$ and $K \neq H$ are arbitrary points on the segments $A H$ and $B C$ respectively. Segments $A C$ and $B P$ intersect at point B_{1}, lines $A B$ and $C P$ at point C_{1}. Let X and Y be the projections of point H on the lines $K B_{1}$ and $K C_{1}$, respectively. Prove that points A, P, X and Y lie on one circle.

- Day 3

$7 \quad$ Let A and B be two sets of real numbers. Suppose that the elements of the set $A B=\{a b$: $a \in A, b \in B\}$ form a finite arithmetic progression. Prove that one of these sets contains no more than three elements
$8 \quad$ Find all functions $f: R \rightarrow R$ such that $f(x) f(y f(x)-1)=x^{2} f(y)-f(x)$ for all real x, y
9 The set M consists of n points on the plane and satisfies the conditions: \bullet there are 7 points in the set M, which are vertices of a convex heptagon, • for arbitrary five points with M, which are vertices of a convex pentagon, there is a point that also belongs to M and lies inside this pentagon.
Find the smallest possible value that n can take .

- Day 4

10 Determine all pairs (x, y) of positive integers such that

$$
\sqrt[3]{7 x^{2}-13 x y+7 y^{2}}=|x-y|+1
$$

Proposed by Titu Andreescu, USA
11 Let Ω and O be the circumcircle and the circumcentre of an acute-angled triangle $A B C$ with $A B>B C$. The angle bisector of $\angle A B C$ intersects Ω at $M \neq B$. Let Γ be the circle with diameter $B M$. The angle bisectors of $\angle A O B$ and $\angle B O C$ intersect Γ at points P and Q, respectively. The point R is chosen on the line $P Q$ so that $B R=M R$. Prove that $B R \| A C$. (Here we always assume that an angle bisector is a ray.)
Proposed by Sergey Berlov, Russia

12 For a given natural n, we consider the set $A \subset\{1,2, \ldots, n\}$, which consists of at least $\left[\frac{n+1}{2}\right]$ items. Prove that for $n \geq 2015$ the set A contains a three-element arithmetic sequence.

