AoPS Community

Nordic 2020

www.artofproblemsolving.com/community/c1135259
by parmenides51

1 For a positive integer n, denote by $g(n)$ the number of strictly ascending triples chosen from the set $\{1,2, \ldots, n\}$. Find the least positive integer n such that the following holds:[i] The number $g(n)$ can be written as the product of three different prime numbers which are (not necessarily consecutive) members in an arithmetic progression with common difference 336.[/i]

2 Georg has $2 n+1$ cards with one number written on each card. On one card the integer 0 is written, and among the rest of the cards, the integers $k=1, \ldots, n$ appear, each twice. Georg wants to place the cards in a row in such a way that the 0 -card is in the middle, and for each $k=1, \ldots, n$, the two cards with the number k have the distance k (meaning that there are exactly $k-1$ cards between them).
For which $1 \leq n \leq 10$ is this possible?
3 Each of the sides $A B$ and $C D$ of a convex quadrilateral $A B C D$ is divided into three equal parts, $|A E|=|E F|=|F B|,|D P|=|P Q|=|Q C|$. The diagonals of $A E P D$ and $F B C Q$ intersect at M and N, respectively. Prove that the sum of the areas of $\triangle A M D$ and $\triangle B N C$ is equal to the sum of the areas of $\triangle E P M$ and $\triangle F N Q$.

4 Find all functions $f: R-\{-1\} \rightarrow R$ such that

$$
f(x) f\left(f\left(\frac{1-y}{1+y}\right)\right)=f\left(\frac{x+y}{x y+1}\right)
$$

for all $x, y \in R$ that satisfy $(x+1)(y+1)(x y+1) \neq 0$.

