

AoPS Community

1980 Austrian-Polish Competition

Austrian-Polish Competition 1980

www.artofproblemsolving.com/community/c1135989 by parmenides51, orl, Kezer

-	Individual
---	------------

- 1 Given three infinite arithmetic progressions of natural numbers such that each of the numbers 1,2,3,4,5,6,7 and 8 belongs to at least one of them, prove that the number 1980 also belongs to at least one of them.
- **2** A sequence of integers $1 = x_1 < x_2 < x_3 < \dots$ satisfies $x_{n+1} \le 2n$ for all *n*. Show that every positive integer *k* can be written as $x_j x_i$ for some *i*, *j*.
- **3** Prove that the sum of the six angles subtended at an interior point of a tetrahedron by its six edges is greater than 540.
- **4** Prove that $\sum \frac{1}{i_1 i_2 \dots i_k} = n$ is taken over all non-empty subsets $\{i_1, i_2, \dots, i_k\}$ of $\{1, 2, \dots, n\}$. (The *k* is not fixed, so we are summing over all the $2^n 1$ possible nonempty subsets.)
- **5** Let $A_1A_2A_3$ be a triangle and, for $1 \le i \le 3$, let B_i be an interior point of edge opposite A_i . Prove that the perpendicular bisectors of A_iB_i for $1 \le i \le 3$ are not concurrent.
- **6** Let a_1, a_2, a_3, \ldots be a sequence of real numbers satisfying the inequality

$$|a_{k+m} - a_k - a_m| \leq 1$$
 for all $k, m \in \mathbb{Z}_{>0}$.

Show that the following inequality holds for all positive integers k, m

$$\left|\frac{a_k}{k} - \frac{a_m}{m}\right| < \frac{1}{k} + \frac{1}{m}.$$

– Team

7 Find the greatest natural number n such there exist natural numbers $x_1, x_2, ..., x_n$ and natural $a_1 < a_2 < ... < a_{n-1}$ satisfying the following equations for i = 1, 2, ..., n - 1:

$$x_1 x_2 \dots x_n = 1980$$
 and $x_i + \frac{1980}{x_i} = a_i$.

AoPS Community

1980 Austrian-Polish Competition

- 8 Let S be a set of 1980 points in the plane such that the distance between every pair of them is at least 1. Prove that S has a subset of 220 points such that the distance between every pair of them is at least $\sqrt{3}$.
- **9** Through the endpoints A and B of a diameter AB of a given circle, the tangents ℓ and m have been drawn. Let $C \neq A$ be a point on ℓ and let q_1, q_2 be two rays from C. Ray q_i cuts the circle in D_i and E_i with D_i between C and $E_i, i = 1, 2$. Rays AD_1, AD_2, AE_1, AE_2 meet m in the respective points M_1, M_2, N_1, N_2 . Prove that $M_1M_2 = N_1N_2$.

Act of Problem Solving is an ACS WASC Accredited School.