AoPS Community

Austrian-Polish Competition 1980

www.artofproblemsolving.com/community/c1135989
by parmenides51, orl, Kezer

- Individual

1 Given three infinite arithmetic progressions of natural numbers such that each of the numbers $1,2,3,4,5,6,7$ and 8 belongs to at least one of them, prove that the number 1980 also belongs to at least one of them.

2 A sequence of integers $1=x_{1}<x_{2}<x_{3}<\ldots$ satisfies $x_{n+1} \leq 2 n$ for all n. Show that every positive integer k can be written as $x_{j}-x_{i}$ for some i, j.

3 Prove that the sum of the six angles subtended at an interior point of a tetrahedron by its six edges is greater than 540.

4 Prove that $\sum \frac{1}{i_{1} i_{2} \ldots i_{k}}=n$ is taken over all non-empty subsets $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ of $\{1,2, \ldots, n\}$. (The k is not fixed, so we are summing over all the $2^{n}-1$ possible nonempty subsets.)

5 Let $A_{1} A_{2} A_{3}$ be a triangle and, for $1 \leq i \leq 3$, let B_{i} be an interior point of edge opposite A_{i}. Prove that the perpendicular bisectors of $A_{i} B_{i}$ for $1 \leq i \leq 3$ are not concurrent.

6 Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of real numbers satisfying the inequality

$$
\left|a_{k+m}-a_{k}-a_{m}\right| \leq 1 \quad \text { for all } k, m \in \mathbb{Z}_{>0} .
$$

Show that the following inequality holds for all positive integers k, m

$$
\left|\frac{a_{k}}{k}-\frac{a_{m}}{m}\right|<\frac{1}{k}+\frac{1}{m} .
$$

- Team

7 Find the greatest natural number n such there exist natural numbers $x_{1}, x_{2}, \ldots, x_{n}$ and natural $a_{1}<a_{2}<\ldots<a_{n-1}$ satisfying the following equations for $i=1,2, \ldots, n-1$:

$$
x_{1} x_{2} \ldots x_{n}=1980 \quad \text { and } \quad x_{i}+\frac{1980}{x_{i}}=a_{i} .
$$

8 Let S be a set of 1980 points in the plane such that the distance between every pair of them is at least 1 . Prove that S has a subset of 220 points such that the distance between every pair of them is at least $\sqrt{3}$.

9 Through the endpoints A and B of a diameter $A B$ of a given circle, the tangents ℓ and m have been drawn. Let $C \neq A$ be a point on ℓ and let q_{1}, q_{2} be two rays from C. Ray q_{i} cuts the circle in D_{i} and E_{i} with D_{i} between C and $E_{i}, i=1,2$. Rays $A D_{1}, A D_{2}, A E_{1}, A E_{2}$ meet m in the respective points $M_{1}, M_{2}, N_{1}, N_{2}$. Prove that $M_{1} M_{2}=N_{1} N_{2}$.

