Art of Problem Solving

AoPS Community

1981 Austrian-Polish Competition

Austrian-Polish Competition 1981

www.artofproblemsolving.com/community/c1136423
by parmenides51, lehungvietbao, Arne

- Individual

1 Find the smallest n for which we can find 15 distinct elements $a_{1}, a_{2}, \ldots, a_{15}$ of $\{16,17, \ldots, n\}$ such that a_{k} is a multiple of k.

2 The sequence $a_{0}, a_{1}, a_{2}, \ldots$ is defined by $a_{n+1}=a_{n}^{2}+\left(a_{n}-1\right)^{2}$ for $n \geq 0$. Find all rational numbers a_{0} for which there exist four distinct indices k, m, p, q such that $a_{q}-a_{p}=a_{m}-a_{k}$.

3 Given is a triangle $A B C$, the inscribed circle G of which has radius r. Let r_{a} be the radius of the circle touching $A B, A C$ and G. [This circle lies inside triangle $A B C$.] Define r_{b} and r_{c} similarly. Prove that $r_{a}+r_{b}+r_{c} \geq r$ and find all cases in which equality occurs.

Bosnia - Herzegovina Mathematical Olympiad 2002

4 Let $n \geq 3$ cells be arranged into a circle. Each cell can be occupied by 0 or 1 . The following operation is admissible: Choose any cell C occupied by a 1 , change it into a 0 and simultaneously reverse the entries in the two cells adjacent to C (so that x, y become $1-x, 1-y$). Initially, there is a 1 in one cell and zeros elsewhere. For which values of n is it possible to obtain zeros in all cells in a finite number of admissible steps?

5 Let $P(x)=x^{4}+a_{1} x^{3}+a_{2} x^{2}+a_{3} x+a_{4}$ be a polynomial with rational coefficients. Show that if $P(x)$ has exactly one real root ξ, then ξ is a rational number.

6 The sequences $\left(x_{n}\right),\left(y_{n}\right),\left(z_{n}\right)$ are given by $x_{n+1}=y_{n}+\frac{1}{x_{n}}, y_{n+1}=z_{n}+\frac{1}{y_{n}}, z_{n+1}=x_{n}+\frac{1}{z_{n}}$ for $n \geq 0$ where x_{0}, y_{0}, z_{0} are given positive numbers. Prove that these sequences are unbounded.

- Team
$7 \quad$ Let $a>3$ be an odd integer. Show that for every positive integer n the number $a^{2^{n}}-1$ has at least $n+1$ distinct prime divisors.

8 The plane has been partitioned into N regions by three bunches of parallel lines. What is the least number of lines needed in order that $N>1981$?
$9 \quad$ For a function $f:[0,1] \rightarrow[0,1]$ we define $f^{1}=f$ and $f^{n+1}(x)=f\left(f^{n}(x)\right)$ for $0 \leq x \leq 1$ and $n \in N$. Given that there is a n such that $\left|f^{n}(x)-f^{n}(y)\right|<|x-y|$ for all distinct $x, y \in[0,1]$,
prove that there is a unique $x_{0} \in[0,1]$ such that $f\left(x_{0}\right)=x_{0}$.

