

AoPS Community

1981 Austrian-Polish Competition

Austrian-Polish Competition 1981

www.artofproblemsolving.com/community/c1136423

by parmenides51, lehungvietbao, Arne

-	Individual
1	Find the smallest n for which we can find 15 distinct elements $a_1, a_2,, a_{15}$ of $\{16, 17,, n\}$ such that a_k is a multiple of k .
2	The sequence $a_0, a_1, a_2,$ is defined by $a_{n+1} = a_n^2 + (a_n - 1)^2$ for $n \ge 0$. Find all rational numbers a_0 for which there exist four distinct indices k, m, p, q such that $a_q - a_p = a_m - a_k$.
3	Given is a triangle ABC , the inscribed circle G of which has radius r . Let r_a be the radius of the circle touching AB , AC and G . [This circle lies inside triangle ABC .] Define r_b and r_c similarly. Prove that $r_a + r_b + r_c \ge r$ and find all cases in which equality occurs.
	Bosnia - Herzegovina Mathematical Olympiad 2002
4	Let $n \ge 3$ cells be arranged into a circle. Each cell can be occupied by 0 or 1. The following operation is admissible: Choose any cell C occupied by a 1, change it into a 0 and simultaneously reverse the entries in the two cells adjacent to C (so that x, y become $1 - x, 1 - y$). Initially, there is a 1 in one cell and zeros elsewhere. For which values of n is it possible to obtain zeros in all cells in a finite number of admissible steps?
5	Let $P(x) = x^4 + a_1x^3 + a_2x^2 + a_3x + a_4$ be a polynomial with rational coefficients. Show that if $P(x)$ has exactly one real root ξ , then ξ is a rational number.
6	The sequences $(x_n), (y_n), (z_n)$ are given by $x_{n+1} = y_n + \frac{1}{x_n}, y_{n+1} = z_n + \frac{1}{y_n}, z_{n+1} = x_n + \frac{1}{z_n}$ for $n \ge 0$ where x_0, y_0, z_0 are given positive numbers. Prove that these sequences are unbounded.
_	Team
7	Let $a > 3$ be an odd integer. Show that for every positive integer n the number $a^{2^n} - 1$ has at least $n + 1$ distinct prime divisors.
8	The plane has been partitioned into N regions by three bunches of parallel lines. What is the least number of lines needed in order that $N>1981$?
9	For a function $f : [0,1] \rightarrow [0,1]$ we define $f^1 = f$ and $f^{n+1}(x) = f(f^n(x))$ for $0 \le x \le 1$ and $n \in N$. Given that there is a n such that $ f^n(x) - f^n(y) < x - y $ for all distinct $x, y \in [0,1]$,

AoPS Community

1981 Austrian-Polish Competition

prove that there is a unique $x_0 \in [0, 1]$ such that $f(x_0) = x_0$.

Act of Problem Solving is an ACS WASC Accredited School.