Art of Problem Solving

AoPS Community

Austrian-Polish Competition 1982

www.artofproblemsolving.com/community/c1136424
by parmenides51, potterhead

- Individual
$1 \quad$ Find all pairs (n, m) of positive integers such that $\operatorname{gcd}\left((n+1)^{m}-n,(n+1)^{m+3}-n\right)>1$.
2 Let F be a closed convex region inside a circle C with center O and radius 1 . Furthermore, assume that from each point of C one can draw two rays tangent to F which form an angle of 60°. Prove that F is the disc centered at O with radius $1 / 2$.

3 If $n \geq 2$ is an integer, prove the equality

$$
\prod_{k=1}^{n} \tan \frac{\pi}{3}\left(1+\frac{3^{k}}{3^{n}-1}\right)=\prod_{k=1}^{n} \cot \frac{\pi}{3}\left(1-\frac{3^{k}}{3^{n}-1}\right)
$$

4 Let $P(x)$ denote the product of all (decimal) digits of a natural number x. For any positive integer x_{1}, define the sequence $\left(x_{n}\right)$ recursively by $x_{n+1}=x_{n}+P\left(x_{n}\right)$. Prove or disprove that the sequence $\left(x_{n}\right)$ is necessarily bounded.

5 Show that $[0,1]$ cannot be partitioned into two disjoints sets A and B such that $B=A+a$ for some real a.
$6 \quad$ An integer a is given. Find all real-valued functions $f(x)$ defined on integers $x \geq a$, satisfying the equation $f(x+y)=f(x) f(y)$ for all $x, y \geq a$ with $x+y \geq a$.

- Team

7 Find the triple of positive integers (x, y, z) with z least possible for which there are positive integers a, b, c, d with the following properties:
(i) $x^{y}=a^{b}=c^{d}$ and $x>a>c$
(ii) $z=a b=c d$
(iii) $x+y=a+b$.

8 Let P be a point inside a regular tetrahedron ABCD with edge length 1 . Show that

$$
d(P, A B)+d(P, A C)+d(P, A D)+d(P, B C)+d(P, B D)+d(P, C D) \geq \frac{3}{2} \sqrt{2}
$$

, with equality only when P is the centroid of $A B C D$.
Here $d(P, X Y)$ denotes the distance from point P to line $X Y$.

9 Define $S_{n}=\sum_{j, k=1}^{n} \frac{1}{\sqrt{j^{2}+k^{2}}}$.
Find a positive constant C such that the inequality $n \leq S_{n} \leq C n$ holds for all $n \geq 3$. (Note. The smaller C, the better the solution.)

