Art of Problem Solving

AoPS Community

Austrian-Polish Competition 1983

www.artofproblemsolving.com/community/c1136425
by parmenides51, Beat

- Individual

1 Nonnegative real numbers a, b, x, y satisfy $a^{5}+b^{5} \leq 1$ and $x^{5}+y^{5} \leq 1$. Prove that $a^{2} x^{3}+b^{2} y^{3} \leq 1$.

2 Find all triples of positive integers (p, q, n) with p and q prime, such that $p(p+1)+q(q+1)=$ $n(n+1)$.

3 A bounded planar region of area S is covered by a finite family F of closed discs. Prove that F contains a subfamily consisting of pairwise disjoint discs, of joint area not less than $S / 9$.
$4 \quad$ The set N has been partitioned into two sets A and B. Show that for every $n \in N$ there exist distinct integers $a, b>n$ such that $a, b, a+b$ either all belong to A or all belong to B.

5 Let $a_{1}<a_{2}<a_{3}<a_{4}$ be given positive numbers. Find all real values of parameter c for which the system $x_{1}+x_{2}+x_{3}+x_{4}=1 a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}=c a_{1}^{2} x_{1}+a_{2}^{2} x_{2}+a_{3}^{2} x_{3}+a_{4}^{2} x_{4}=c^{2}$ has a solution in nonnegative ($x_{1}, x_{2}, x_{3}, x_{4}$) real numbers.

6 Six straight lines are given in space. Among any three of them, two are perpendicular. Show that the given lines can be labeled $\ell_{1}, \ldots, \ell_{6}$ in such a way that $\ell_{1}, \ell_{2}, \ell_{3}$ are pairwise perpendicular, and so are $\ell_{4}, \ell_{5}, \ell_{6}$.

- Team

7 Let $P_{1}, P_{2}, P_{3}, P_{4}$ be four distinct points in the plane. Suppose $\ell_{1}, \ell_{2},, \ell_{6}$ are closed segments in that plane with the following property: Every straight line passing through at least one of the points P_{i} meets the union $\ell_{1} \cup \ell_{2} \cup \cup \ell_{6}$ in exactly two points. Prove or disprove that the segments ℓ_{i} necessarily form a hexagon.

8 (a) Prove that $\left(2^{n+1}-1\right)$! is divisible by $\prod_{i=0}^{n}\left(2^{n+1-i}-1\right)^{2^{i}}$, for every natural number n
(b) Define the sequence $\left(c_{n}\right)$ by $c_{1}=1$ and $c_{n}=\frac{4 n-6}{n} c_{n-1}$ for $n \geq 2$. Show that each c_{n} is an integer.

9 To each side of the regular p-gon of side length 1 there is attached a $1 \times k$ rectangle, partitioned into k unit cells, where k and p are given positive integers and p an odd prime. Let P be the resulting nonconvex star-like polygonal figure consisting of $k p+1$ regions ($k p$ unit cells and the p-gon). Each region is to be colored in one of three colors, adjacent regions having different
colors. Furthermore, it is required that the colored figure should not have a symmetry axis. In how many ways can this be done?

