

AoPS Community

1983 Austrian-Polish Competition

Austrian-Polish Competition 1983

www.artofproblemsolving.com/community/c1136425 by parmenides51, Beat

-	Individual
1	Nonnegative real numbers a, b, x, y satisfy $a^5 + b^5 \le 1$ and $x^5 + y^5 \le 1$. Prove that $a^2x^3 + b^2y^3 \le 1$.
2	Find all triples of positive integers (p, q, n) with p and q prime, such that $p(p + 1) + q(q + 1) = n(n + 1)$.
3	A bounded planar region of area S is covered by a finite family F of closed discs. Prove that F contains a subfamily consisting of pairwise disjoint discs, of joint area not less than $S/9$.
4	The set N has been partitioned into two sets A and B . Show that for every $n \in N$ there exist distinct integers $a, b > n$ such that $a, b, a + b$ either all belong to A or all belong to B .
5	Let $a_1 < a_2 < a_3 < a_4$ be given positive numbers. Find all real values of parameter c for which the system $x_1 + x_2 + x_3 + x_4 = 1$ $a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = c$ $a_1^2x_1 + a_2^2x_2 + a_3^2x_3 + a_4^2x_4 = c^2$ has a solution in nonnegative (x_1, x_2, x_3, x_4) real numbers.
6	Six straight lines are given in space. Among any three of them, two are perpendicular. Show that the given lines can be labeled $\ell_1,, \ell_6$ in such a way that ℓ_1, ℓ_2, ℓ_3 are pairwise perpendicular, and so are ℓ_4, ℓ_5, ℓ_6 .
-	Team
7	Let P_1, P_2, P_3, P_4 be four distinct points in the plane. Suppose ℓ_1, ℓ_2, ℓ_6 are closed segments in that plane with the following property: Every straight line passing through at least one of the points P_i meets the union $\ell_1 \cup \ell_2 \cup \cup \ell_6$ in exactly two points. Prove or disprove that the segments ℓ_i necessarily form a hexagon.
8	(a) Prove that $(2^{n+1}-1)!$ is divisible by $\prod_{i=0}^{n}(2^{n+1-i}-1)^{2^{i}}$, for every natural number n (b) Define the sequence (c_{n}) by $c_{1} = 1$ and $c_{n} = \frac{4n-6}{n}c_{n-1}$ for $n \geq 2$. Show that each c_{n} is an integer.
9	To each side of the regular <i>p</i> -gon of side length 1 there is attached a $1 \times k$ rectangle, partitioned into <i>k</i> unit cells, where <i>k</i> and <i>p</i> are given positive integers and p an odd prime. Let <i>P</i> be the resulting nonconvex star-like polygonal figure consisting of $kp + 1$ regions (kp unit cells and the <i>p</i> -gon). Each region is to be colored in one of three colors, adjacent regions having different

AoPS Community

1983 Austrian-Polish Competition

colors. Furthermore, it is required that the colored figure should not have a symmetry axis. In how many ways can this be done?

Act of Problem Solving is an ACS WASC Accredited School.