Art of Problem Solving

AoPS Community

1987 Austrian-Polish Competition

Austrian-Polish Competition 1987

www.artofproblemsolving.com/community/c1136433
by parmenides51, pluto_NODET

- Individual

1 Three pairwise orthogonal chords of a sphere S are drawn through a given point P inside S. Prove that the sum of the squares of their lengths does not depend on their directions.

2 Let n be the square of an integer whose each prime divisor has an even number of decimal digits. Consider $P(x)=x^{n}-1987 x$. Show that if x, y are rational numbers with $P(x)=P(y)$, then $x=y$.
$3 \quad$ A function $f: R \rightarrow R$ satisfies $f(x+1)=f(x)+1$ for all x. Given $a \in R$, define the sequence $\left(x_{n}\right)$ recursively by $x_{0}=a$ and $x_{n+1}=f\left(x_{n}\right)$ for $n \geq 0$. Suppose that, for some positive integer m , the difference $x_{m}-x_{0}=k$ is an integer. Prove that the limit $\lim _{n \rightarrow \infty} \frac{x_{n}}{n}$ exists and determine its value.

4 Does the set $\{1,2,3, \ldots, 3000\}$ contain a subset A consisting of 2000 numbers that $x \in A$ implies $2 x \notin A$?!! ??:

5 The Euclidian three-dimensional space has been partitioned into three nonempty sets A_{1}, A_{2}, A_{3}. Show that one of these sets contains, for each $d>0$, a pair of points at mutual distance d.
$6 \quad$ Let C be a unit circle and $n \geq 1$ be a fixed integer. For any set A of n points P_{1}, \ldots, P_{n} on C define $D(A)=\max _{d} \min _{i} \delta\left(P_{i}, d\right)$, where d goes over all diameters of C and $\delta(P, \ell)$ denotes the distance from point P to line ℓ. Let F_{n} be the family of all such sets A. Determine $D_{n}=\min _{A \in F_{n}} D(A)$ and describe all sets A with $D(A)=D_{n}$.

- Team

7 For any natural number $n=\overline{a_{k} \ldots a_{1} a_{0}}\left(a_{k} \neq 0\right)$ in decimal system write $p(n)=a_{0} \cdot a_{1} \cdot \ldots \cdot a_{k}$, $s(n)=a_{0}+a_{1}+\ldots+a_{k}, n^{*}=\overline{a_{0} a_{1} \ldots a_{k}}$. Consider $P=\left\{n \mid n=n^{*}, \frac{1}{3} p(n)=s(n)-1\right\}$ and let Q be the set of numbers in P with all digits greater than 1 .
(a) Show that P is infinite.
(b) Show that Q is finite.
(c) Write down all the elements of Q.

8 A circle of perimeter 1 has been dissected into four equal arcs $B_{1}, B_{2}, B_{3}, B_{4}$. A closed smooth non-selfintersecting curve C has been composed of translates of these arcs (each B_{j} possibly occurring several times). Prove that the length of C is an integer.

9 Let M be the set of all points (x, y) in the cartesian plane, with integer coordinates satisfying $1 \leq x \leq 12$ and $1 \leq y \leq 13$.
(a) Prove that every 49-element subset of M contains four vertices of a rectangle with sides parallel to the coordinate axes.
(b) Give an example of a 48-element subset of M without this property.

