

AoPS Community

1987 Austrian-Polish Competition

Austrian-Polish Competition 1987

www.artofproblemsolving.com/community/c1136433 by parmenides51, pluto_NODET

-	Indivi	Individual		
_				

- 1 Three pairwise orthogonal chords of a sphere *S* are drawn through a given point *P* inside *S*. Prove that the sum of the squares of their lengths does not depend on their directions.
- **2** Let *n* be the square of an integer whose each prime divisor has an even number of decimal digits. Consider $P(x) = x^n 1987x$. Show that if x, y are rational numbers with P(x) = P(y), then x = y.
- **3** A function $f : R \to R$ satisfies f(x + 1) = f(x) + 1 for all x. Given $a \in R$, define the sequence (x_n) recursively by $x_0 = a$ and $x_{n+1} = f(x_n)$ for $n \ge 0$. Suppose that, for some positive integer m, the difference $x_m x_0 = k$ is an integer. Prove that the limit $\lim_{n\to\infty} \frac{x_n}{n}$ exists and determine its value.
- **4** Does the set $\{1, 2, 3, ..., 3000\}$ contain a subset A consisting of 2000 numbers that $x \in A$ implies $2x \notin A$?!! :?:
- 5 The Euclidian three-dimensional space has been partitioned into three nonempty sets A_1, A_2, A_3 . Show that one of these sets contains, for each d > 0, a pair of points at mutual distance d.
- 6 Let *C* be a unit circle and $n \ge 1$ be a fixed integer. For any set *A* of *n* points $P_1, ..., P_n$ on *C* define $D(A) = \max_d \min_i \delta(P_i, d)$, where *d* goes over all diameters of *C* and $\delta(P, \ell)$ denotes the distance from point *P* to line ℓ . Let F_n be the family of all such sets *A*. Determine $D_n = \min_{A \in F_n} D(A)$ and describe all sets *A* with $D(A) = D_n$.

– Team

- For any natural number n = a_k...a₁a₀ (a_k ≠ 0) in decimal system write p(n) = a₀ · a₁ · ... · a_k, s(n) = a₀ + a₁ + ... + a_k, n* = a₀a₁...a_k. Consider P = {n|n = n*, 1/3p(n) = s(n) 1} and let Q be the set of numbers in P with all digits greater than 1.
 (a) Show that P is infinite.
 (b) Show that Q is finite.
 (c) Write down all the elements of Q.
- 8 A circle of perimeter 1 has been dissected into four equal arcs B_1, B_2, B_3, B_4 . A closed smooth non-selfintersecting curve C has been composed of translates of these arcs (each B_j possibly occurring several times). Prove that the length of C is an integer.

AoPS Community

1987 Austrian-Polish Competition

9 Let *M* be the set of all points (*x*, *y*) in the cartesian plane, with integer coordinates satisfying 1 ≤ *x* ≤ 12 and 1 ≤ *y* ≤ 13.
(a) Prove that every 49-element subset of *M* contains four vertices of a rectangle with sides parallel to the coordinate axes.
(b) Give an example of a 48-element subset of *M* without this property.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬