Art of Problem Solving

AoPS Community

1988 Austrian-Polish Competition

Austrian-Polish Competition 1988

www.artofproblemsolving.com/community/c1136434
by parmenides51, fallinlovewithmaths

- Individual

1 Let $P(x)$ be a polynomial with integer coefficients. Show that if $Q(x)=P(x)+12$ has at least six distinct integer roots, then $P(x)$ has no integer roots.

2 If $a_{1} \leq a_{2} \leq . . \leq a_{n}$ are natural numbers ($n \geq 2$), show that the inequality

$$
\sum_{i=1}^{n} a_{i} x_{i}^{2}+2 \sum_{i=1}^{n-1} x_{i} x_{i+1}>0
$$

holds for all n-tuples $\left(x_{1}, \ldots, x_{n}\right) \neq(0, \ldots, 0)$ of real numbers if and only if $a_{2} \geq 2$.
3 In a ABCD cyclic quadrilateral 4 points K, L, M, N are taken on $A B, B C, C D$ and $D A$, respectively such that KLMN is a parallelogram. Lines AD, BC and KM have a common point. And also lines $A B, D C$ and NL have a common point. Prove that KLMN is rhombus.

4 Determine all strictly increasing functions $f: R \rightarrow R$ satisfying $f(f(x)+y)=f(x+y)+f(0)$ for all $x, y \in R$.

5 Two sequences $\left(a_{k}\right)_{k \geq 0}$ and $\left(b_{k}\right)_{k \geq 0}$ of integers are given by $b_{k}=a_{k}+9$ and $a_{k+1}=8 b_{k}+8$ for $k \geq 0$. Suppose that the number 1988 occurs in one of these sequences. Show that the sequence (a_{k}) does not contain any nonzero perfect square.

6 Three rays h_{1}, h_{2}, h_{3} emanating from a point O are given, not all in the same plane. Show that if for any three points A_{1}, A_{2}, A_{3} on h_{1}, h_{2}, h_{3} respectively, distinct from O, the triangle $A_{1} A_{2} A_{3}$ is acute-angled, then the rays h_{1}, h_{2}, h_{3} are pairwise orthogonal.

- Team

7 Each side of a regular octagon is colored blue or yellow. In each step, the sides are simultaneously recolored as follows: if the two neighbors of a side have different colors, the side will be recolored blue, otherwise it will be recolored yellow. Show that after a finite number of moves all sides will be colored yellow. What is the least value of the number N of moves that always lead to all sides being yellow?

8 We are given 1988 unit cubes. Using some or all of these cubes, we form three quadratic boards A, B, C of dimensions $a \times a \times 1, b \times b \times 1$, and $c \times c \times 1$ respectively, where $a \leq b \leq c$. Now we place board B on board C so that each cube of B is precisely above a cube of C and B does
not overlap C. Similarly, we place A on B. This gives us a three-floor tower. What choice of a, b and c gives the maximum number of such three-floor towers?
$9 \quad$ For a rectangle R with integral side lengths, denote by $D(a, b)$ the number of ways of covering R by congruent rectangles with integral side lengths formed by a family of cuts parallel to one side of R. Determine the perimeter P of the rectangle R for which $\frac{D(a, b)}{a+b}$ is maximal.

