

AoPS Community

1989 Austrian-Polish Competition

Austrian-Polish Competition 1989

www.artofproblemsolving.com/community/c1136435 by parmenides51, Beat, Amir.S

– Individual

1	Show that $(\sum_{i=1}^n x_i y_i z_i)^2 \leq (\sum_{i=1}^n x_i^3)(\sum_{i=1}^n y_i^3)(\sum_{i=1}^n z_i^3)$ for any positive reals x_i, y_i, z_i .
2	Each point of the plane is colored by one of the two colors. Show that there exists an equilateral triangle with monochromatic vertices.
3	Find all natural numbers N (in decimal system) with the following properties: (i) $N = \overline{aabb}$, where \overline{aab} and \overline{abb} are primes, (ii) $N = P_1P_2P_3$, where $P_k(k = 1, 2, 3)$ is a prime consisting of k (decimal) digits.
4	Let P be a convex polygon in the plane. Show that there exists a circle containing the entire polygon P and having at least three adjacent vertices of P on its boundary.
5	Let <i>A</i> be a vertex of a cube ω circumscribed about a sphere <i>k</i> of radius 1. We consider lines <i>g</i> through <i>A</i> containing at least one point of <i>k</i> . Let <i>P</i> be the intersection point of <i>g</i> and <i>k</i> closer to <i>A</i> , and <i>Q</i> be the second intersection point of <i>g</i> and ω . Determine the maximum value of $AP \cdot AQ$ and characterize the lines <i>g</i> yielding the maximum.
6	A sequence $(a_n)_{n \in N}$ of squares of nonzero integers is such that for each n the difference $a_{n+1} - a_n$ is a prime or the square of a prime. Show that all such sequences are finite and determine the longest sequence.
-	Team
7	Functions $f_0, f_1, f_2,$ are recursively defined by $f_0(x) = x$ and $f_{2k+1}(x) = 3^{f_{2k}(x)}$ and $f_{2k+2} = 2^{f_{2k+1}(x)}$, $k = 0, 1, 2,$ for all $x \in R$. Find the greater one of the numbers $f_{10}(1)$ and $f_9(2)$.
8	<i>ABC</i> is an acute-angled triangle and <i>P</i> a point inside or on the boundary. The feet of the per- pendiculars from <i>P</i> to <i>BC</i> , <i>CA</i> , <i>AB</i> are <i>A'</i> , <i>B'</i> , <i>C'</i> respectively. Show that if <i>ABC</i> is equilateral, then $\frac{AC'+BA'+CB'}{PA'+PB'+PC'}$ is the same for all positions of <i>P</i> , but that for any other triangle it is not.
9	Find the smallest odd natural number N such that N^2 is the sum of an odd number (greater than 1) of squares of adjacent positive integers.

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.