Art of Problem Solving

AoPS Community

Austrian-Polish Competition 1991

www.artofproblemsolving.com/community/c1136436
by parmenides51

- Individual

1 Show that there are infinitely many integers $m \geq 2$ such that $\binom{m}{2}=3\binom{n}{4}$ holds for some integer $n \geq 4$. Give the general form of all such m.

2 Find all solutions (x, y, z) to the system $\left(x^{2}-6 x+13\right) y=20\left(y^{2}-6 y+13\right) z=20\left(z^{2}-6 z+13\right) x=$ 20.

3 Given two distinct points A_{1}, A_{2} in the plane, determine all possible positions of a point A_{3} with the following property: There exists an array of (not necessarily distinct) points $P_{1}, P_{2}, \ldots, P_{n}$ for some $n \geq 3$ such that the segments $P_{1} P_{2}, P_{2} P_{3}, \ldots, P_{n} P_{1}$ have equal lengths and their midpoints are $A_{1}, A_{2}, A_{3}, A_{1}, A_{2}, A_{3}, \ldots$ in this order.

4 Let $P(x)$ be a real polynomial with $P(x) \geq 0$ for $0 \leq x \leq 1$. Show that there exist polynomials $P_{i}(x)(i=0,1,2)$ with $P_{i}(x) \geq 0$ for all real x such that $P(x)=P_{0}(x)+x P_{1}(x)(1-x) P_{2}(x)$.

5 If x, y, z are arbitrary positive numbers with $x y z=1$, prove the inequality

$$
x^{2}+y^{2}+z^{2}+x y+y z+z x \geq 2(\sqrt{x}+\sqrt{y}+\sqrt{z})
$$

6 Suppose that there is a point P inside a convex quadrilateral $A B C D$ such that the triangles $P A B, P B C, P C D, P D A$ have equal areas. Prove that one of the diagonals bisects the area of $A B C D$.

- Team

7 For a given positive integer n determine the maximum value of the function $f(x)=\frac{x+x^{2}+\ldots+x^{2 n-1}}{\left(1+x^{n}\right)^{2}}$ over all $x \geq 0$ and find all positive x for which the maximum is attained.

8 Consider the system of congruences $x y \equiv-1(\bmod z), y z \equiv 1(\bmod x), z x \equiv 1(\bmod y)$. Find the number of triples (x, y, z) of distinct positive integers satisfying this system such that one of the numbers x, y, z equals 19 .
$9 \quad$ For a positive integer n denote $A=\{1,2, \ldots, n\}$. Suppose that $g: A \rightarrow A$ is a fixed function with $g(k) \neq k$ and $g(g(k))=k$ for $k \in A$. How many functions $f: A \rightarrow A$ are there such that $f(k) \neq g(k)$ and $f(f(f(k))=g(k)$ for $k \in A$?

