AoPS Community

Austrian-Polish Competition 1993

www.artofproblemsolving.com/community/c1136437
by parmenides51, N.T.TUAN

- Individual

1 Solve in positive integers x, y the equation $2^{x}-3^{y}=7$.
2 Consider all tetrahedra $A B C D$ in which the sum of the areas of the faces $A B D, A C D, B C D$ does not exceed 1 . Among such tetrahedra, find those with the maximum volume.

3 Define $f(n)=n+1$ if $n=p^{k}>1$ is a power of a prime number, and $f(n)=p_{1}^{k_{1}}+\ldots+p_{r}^{k_{r}}$ for natural numbers $n=p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}\left(r>1, k_{i}>0\right)$. Given $m>1$, we construct the sequence $a_{0}=m, a_{j+1}=f\left(a_{j}\right)$ for $j \geq 0$ and denote by $g(m)$ the smallest term in this sequence. For each $m>1$, determine $g(m)$.

4 The Fibonacci numbers are defined by $F_{0}=1, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$. The positive integers A, B are such that A^{19} divides B^{93} and B^{19} divides A^{93}. Show that if $h<k$ are consecutive Fibonacci numbers then $(A B)^{h}$ divides $\left(A^{4}+B^{8}\right)^{k}$

5 Solve in real numbers the system

$$
\left\{\begin{array}{l}
x^{3}+y=3 x+4 \\
2 y^{3}+z=6 y+6 \\
3 z^{3}+x=9 z+8
\end{array}\right.
$$

6 If $a, b \geq 0$ are real numbers, prove the inequality

$$
\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^{2} \leq \frac{a+\sqrt[3]{a^{2} b}+\sqrt[3]{a b^{2}}+b}{4} \leq \frac{a+\sqrt{a b}+b}{3} \leq \sqrt{\left(\frac{a^{2 / 3}+b^{2 / 3}}{2}\right)^{3}}
$$

For each of the inequalities, find the cases of equality.

- Team

7 The sequence $\left(a_{n}\right)$ is defined by $a_{0}=0$ and $a_{n+1}=\left[\sqrt[3]{a_{n}+n}\right]^{3}$ for $n \geq 0$.
(a) Find a_{n} in terms of n.
(b) Find all n for which $a_{n}=n$.

8 Determine all real polynomials $P(z)$ for which there exists a unique real polynomial $Q(x)$ satisfying the conditions $Q(0)=0, x+Q(y+P(x))=y+Q(x+P(y))$ for all $x, y \in R$.
$9 \quad$ Point P is taken on the extension of side $A B$ of an equilateral triangle $A B C$ so that A is between B and P. Denote by a the side length of triangle $A B C$, by r_{1} the inradius of triangle $P A C$, and by r_{2} the exradius of triangle $P B C$ opposite P. Find the sum $r_{1}+r_{2}$ as a function in a.

