

AoPS Community

1993 Austrian-Polish Competition

Austrian-Polish Competition 1993

www.artofproblemsolving.com/community/c1136437 by parmenides51, N.T.TUAN

-	Individual
1	Solve in positive integers x, y the equation $2^x - 3^y = 7$.
2	Consider all tetrahedra <i>ABCD</i> in which the sum of the areas of the faces <i>ABD</i> , <i>ACD</i> , <i>BCD</i> does not exceed 1. Among such tetrahedra, find those with the maximum volume.
3	Define $f(n) = n + 1$ if $n = p^k > 1$ is a power of a prime number, and $f(n) = p_1^{k_1} + + p_r^{k_r}$ for natural numbers $n = p_1^{k_1} p_r^{k_r}$ ($r > 1, k_i > 0$). Given $m > 1$, we construct the sequence $a_0 = m, a_{j+1} = f(a_j)$ for $j \ge 0$ and denote by $g(m)$ the smallest term in this sequence. For each $m > 1$, determine $g(m)$.
4	The Fibonacci numbers are defined by $F_0 = 1$, $F_1 = 1$, $F_{n+2} = F_{n+1} + F_n$. The positive integers A, B are such that A^{19} divides B^{93} and B^{19} divides A^{93} . Show that if $h < k$ are consecutive Fibonacci numbers then $(AB)^h$ divides $(A^4 + B^8)^k$

5 Solve in real numbers the system

$$\begin{cases} x^3 + y = 3x + 4\\ 2y^3 + z = 6y + 6\\ 3z^3 + x = 9z + 8 \end{cases}$$

6 If $a, b \ge 0$ are real numbers, prove the inequality

$$\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^2 \le \frac{a+\sqrt[3]{a^2b}+\sqrt[3]{ab^2}+b}{4} \le \frac{a+\sqrt{ab}+b}{3} \le \sqrt{\left(\frac{a^{2/3}+b^{2/3}}{2}\right)^3}$$

For each of the inequalities, find the cases of equality.

- Team 7 The sequence (a_n) is defined by $a_0 = 0$ and $a_{n+1} = [\sqrt[3]{a_n + n}]^3$ for $n \ge 0$. (a) Find a_n in terms of n. (b) Find all n for which $a_n = n$.

AoPS Community

1993 Austrian-Polish Competition

- 8 Determine all real polynomials P(z) for which there exists a unique real polynomial Q(x) satisfying the conditions Q(0) = 0, x + Q(y + P(x)) = y + Q(x + P(y)) for all $x, y \in R$.
- **9** Point *P* is taken on the extension of side *AB* of an equilateral triangle *ABC* so that *A* is between *B* and *P*. Denote by *a* the side length of triangle *ABC*, by r_1 the inradius of triangle *PAC*, and by r_2 the exadius of triangle *PBC* opposite *P*. Find the sum $r_1 + r_2$ as a function in *a*.

AoPS Online AoPS Academy AoPS Catery

Art of Problem Solving is an ACS WASC Accredited School.