

AoPS Community

Austrian-Polish Competition 1995

www.artofproblemsolving.com/community/c1136447 by parmenides51, N.T.TUAN

-	Individual
---	------------

1 Determine all real solutions $(a_1, ..., a_n)$ of the following system of equations:

 $\begin{cases} a_3 = a_2 + a_1 \\ a_4 = a_3 + a_2 \\ \dots \\ a_n = a_{n-1} + a_{n-2} \\ a_1 = a_n + a_{n-1} \\ a_2 = a_1 + a_n \end{cases}$

- **2** Let $X = \{A_1, A_2, A_3, A_4\}$ be a set of four distinct points in the plane. Show that there exists a subset *Y* of *X* with the property that there is no (closed) disk *K* such that $K \cap X = Y$.
- **3** Let $P(x) = x^4 + x^3 + x^2 + x + 1$. Show that there exist two non-constant polynomials Q(y) and R(y) with integer coefficients such that for all $Q(y) \cdot R(y) = P(5y^2)$ for all y.
- **4** Determine all polynomials P(x) with real coefficients such that $P(x)^2 + P\left(\frac{1}{x}\right)^2 = P(x^2)P\left(\frac{1}{x^2}\right)$ for all x.
- 5 ABC is an equilateral triangle. A_1, B_1, C_1 are the midpoints of BC, CA, AB respectively. p is an arbitrary line through A_1 . q and r are lines parallel to p through B_1 and C_1 respectively. p meets the line B_1C_1 at A_2 . Similarly, q meets C_1A_1 at B_2 , and r meets A_1B_1 at C_2 . Show that the lines AA_2, BB_2, CC_2 meet at some point X, and that X lies on the circumcircle of ABC.
- **6** The Alpine Club organizes four mountain trips for its *n* members. Let E_1, E_2, E_3, E_4 be the teams participating in these trips. In how many ways can these teams be formed so as to satisfy $E_1 \cap E_2 \neq \emptyset$, $E_2 \cap E_3 \neq \emptyset$, $E_3 \cap E_4 \neq \emptyset$?
- Team
- 7 Consider the equation $3y^4 + 4cy^3 + 2xy + 48 = 0$, where *c* is an integer parameter. Determine all values of *c* for which the number of integral solutions (x, y) satisfying the conditions (i) and (ii) is maximal:
 - (i) |x| is a square of an integer;
 - (ii) y is a squarefree number.

AoPS Community

1995 Austrian-Polish Competition

- 8 Consider the cube with the vertices at the points (±1, ±1, ±1). Let V₁, ..., V₉₅ be arbitrary points within this cube. Denote v_i = OV_i, where O = (0,0,0) is the origin. Consider the 2⁹⁵ vectors of the form s₁v₁ + s₂v₂ + ... + s₉₅v₉₅, where s_i = ±1.
 (a) If d = 48, prove that among these vectors there is a vector w = (a, b, c) such that a²+b²+c² ≤ 48.
 (b) Find a smaller d (the smaller, the better) with the same property.
- **9** Prove that for all positive integers n, m and all real numbers x, y > 0 the following inequality holds:

$$(n-1)(m-1)(x^{n+m}+y^{n+m}) + (n+m-1)(x^ny^m + x^my^n) \ge nm(x^{n+m-1}y + xy^{n+m-1}).$$

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY