AoPS Community

Austrian-Polish Competition 1995

www.artofproblemsolving.com/community/c1136447
by parmenides51, N.T.TUAN

- Individual

1 Determine all real solutions $\left(a_{1}, \ldots, a_{n}\right)$ of the following system of equations:

$$
\left\{\begin{array}{l}
a_{3}=a_{2}+a_{1} \\
a_{4}=a_{3}+a_{2} \\
\ldots \\
a_{n}=a_{n-1}+a_{n-2} \\
a_{1}=a_{n}+a_{n-1} \\
a_{2}=a_{1}+a_{n}
\end{array}\right.
$$

2 Let $X=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ be a set of four distinct points in the plane. Show that there exists a subset Y of X with the property that there is no (closed) disk K such that $K \cap X=Y$.

3 Let $P(x)=x^{4}+x^{3}+x^{2}+x+1$. Show that there exist two non-constant polynomials $Q(y)$ and $R(y)$ with integer coefficients such that for all $Q(y) \cdot R(y)=P\left(5 y^{2}\right)$ for all y.

4 Determine all polynomials $P(x)$ with real coefficients such that $P(x)^{2}+P\left(\frac{1}{x}\right)^{2}=P\left(x^{2}\right) P\left(\frac{1}{x^{2}}\right)$ for all x.
$5 \quad A B C$ is an equilateral triangle. A_{1}, B_{1}, C_{1} are the midpoints of $B C, C A, A B$ respectively. p is an arbitrary line through $A_{1} . q$ and r are lines parallel to p through B_{1} and C_{1} respectively. p meets the line $B_{1} C_{1}$ at A_{2}. Similarly, q meets $C_{1} A_{1}$ at B_{2}, and r meets $A_{1} B_{1}$ at C_{2}. Show that the lines $A A_{2}, B B_{2}, C C_{2}$ meet at some point X, and that X lies on the circumcircle of $A B C$.

6 The Alpine Club organizes four mountain trips for its n members. Let $E_{1}, E_{2}, E_{3}, E_{4}$ be the teams participating in these trips. In how many ways can these teams be formed so as to satisfy $E_{1} \cap E_{2} \neq \varnothing, E_{2} \cap E_{3} \neq \varnothing, E_{3} \cap E_{4} \neq \varnothing$?

- Team

7 Consider the equation $3 y^{4}+4 c y^{3}+2 x y+48=0$, where c is an integer parameter. Determine all values of c for which the number of integral solutions (x, y) satisfying the conditions (i) and (ii) is maximal:
(i) $|x|$ is a square of an integer;
(ii) y is a squarefree number.

8 Consider the cube with the vertices at the points $(\pm 1, \pm 1, \pm 1)$. Let V_{1}, \ldots, V_{95} be arbitrary points within this cube. Denote $v_{i}=\overrightarrow{O V}_{i}$, where $O=(0,0,0)$ is the origin. Consider the 2^{95} vectors of the form $s_{1} v_{1}+s_{2} v_{2}+\ldots+s_{95} v_{95}$, where $s_{i}= \pm 1$.
(a) If $d=48$, prove that among these vectors there is a vector $w=(a, b, c)$ such that $a^{2}+b^{2}+c^{2} \leq$ 48.
(b) Find a smaller d (the smaller, the better) with the same property.

9 Prove that for all positive integers n, m and all real numbers $x, y>0$ the following inequality holds:

$$
(n-1)(m-1)\left(x^{n+m}+y^{n+m}\right)+(n+m-1)\left(x^{n} y^{m}+x^{m} y^{n}\right) \geq n m\left(x^{n+m-1} y+x y^{n+m-1}\right)
$$

