AoPS Community

Austrian-Polish Competition 1996

www.artofproblemsolving.com/community/c1136448
by parmenides51, April, lehungvietbao, mathjmk33

- Individual

1 Let $k \geq 1$ be a positive integer. Prove that there exist exactly 3^{k-1} natural numbers n with the following properties:
(i) n has exactly k digits (in decimal representation),
(ii) all the digits of n are odd,
(iii) n is divisible by 5 ,
(iv) the number $m=n / 5$ has k odd digits

2 A convex hexagon $A B C D E F$ satisfies the following conditions:

1) $A B\|D E, B C\| E F$, and $C D \| F A$.
2) The distances between these pairs of parallel lines are the same.
3) $\angle F A B=\angle C D E=90^{\circ}$

Prove that the diagonals $B E$ and $C F$ of the hexagon intersect with angle 45 degrees.

- Thank you dear Babis Stergiou for your translation. :P

3 The polynomials $P_{n}(x)$ are defined by $P_{0}(x)=0, P_{1}(x)=x$ and

$$
P_{n}(x)=x P_{n-1}(x)+(1-x) P_{n-2}(x) \quad n \geq 2
$$

For every natural number $n \geq 1$, find all real numbers x satisfying the equation $P_{n}(x)=0$.
4 Real numbers x, y, z, t satisfy $x+y+z+t=0$ and $x^{2}+y^{2}+z^{2}+t^{2}=1$.
Prove that $-1 \leq x y+y z+z t+t x \leq 0$.
$5 \quad$ A sphere S divides every edge of a convex polyhedron P into three equal parts. Show that there exists a sphere tangent to all the edges of P.

6 Given natural numbers $n>k>1$, find all real solutions x_{1}, \ldots, x_{n} of the system

$$
x_{i}^{3}\left(x_{i}^{2}+x_{i+1}^{2}+\ldots+x_{i+k-1}^{2}\right)=x_{i-1}^{2}
$$

for $1 \leq i \leq n$. Here $x_{n+i}=x_{i}$ for all i.

7 Prove there are no such integers k, m which satisfy $k \geq 0, m \geq 0$ and $k!+48=48(k+1)^{m}$.

8 Show that there is no polynomial $P(x)$ of degree 998 with real coefficients which satisfies $P\left(x^{2}+\right.$ 1) $=P(x)^{2}-1$ for all x.

9 For any triple (a, b, c) of positive integers, not all equal, We are given sufficiently many rectangular blocks of size $a \times b \times c$. We use these blocks to fill up a cubic box of edge 10 .
(a) Assume we have used at least 100 blocks. Show that there are two blocks, one of which is a translate of the other.
(b) Find a number smaller than 100 (the smaller, the better) for which the above statement still holds.

