

AoPS Community

1996 Austrian-Polish Competition

Austrian-Polish Competition 1996

www.artofproblemsolving.com/community/c1136448 by parmenides51, April, lehungvietbao, mathjmk33

- Individual
- Let k ≥ 1 be a positive integer. Prove that there exist exactly 3^{k-1} natural numbers n with the following properties:
 (i) n has exactly k digits (in decimal representation),
 (ii) all the digits of n are odd,
 (iii) n is divisible by 5,
 (iv) the number m = n/5 has k odd digits
- A convex hexagon ABCDEF satisfies the following conditions:
 1) AB || DE, BC || EF, and CD || FA.
 2) The distances between these pairs of parallel lines are the same.
 3) ∠FAB = ∠CDE = 90°
 Prove that the diagonals BE and CF of the hexagon intersect with angle 45 degrees.
 Thank you dear Babis Stergiou for your translation. :P
- **3** The polynomials $P_n(x)$ are defined by $P_0(x) = 0$, $P_1(x) = x$ and

 $P_n(x) = xP_{n-1}(x) + (1-x)P_{n-2}(x) \quad n \ge 2$

For every natural number $n \ge 1$, find all real numbers x satisfying the equation $P_n(x) = 0$.

4 Real numbers x, y, z, t satisfy x + y + z + t = 0 and $x^2 + y^2 + z^2 + t^2 = 1$.

Prove that $-1 \le xy + yz + zt + tx \le 0$.

5 A sphere *S* divides every edge of a convex polyhedron *P* into three equal parts. Show that there exists a sphere tangent to all the edges of *P*.

6 Given natural numbers n > k > 1, find all real solutions $x_1, ..., x_n$ of the system

$$x_i^3(x_i^2 + x_{i+1}^2 + \dots + x_{i+k-1}^2) = x_{i-1}^2$$

for $1 \le i \le n$. Here $x_{n+i} = x_i$ for all *i*.

Team
Prove there are no such integers k, m which satisfy k > 0, m > 0 and k! + 48 = 48(k + 1)^m.

AoPS Community

1996 Austrian-Polish Competition

8	Show that there is no polynomial $P(x)$ of degree 998 with real coefficients which satisfies $P(x^2 + 1) = P(x)^2 - 1$ for all x .
9	 For any triple (a, b, c) of positive integers, not all equal, We are given sufficiently many rectangular blocks of size a × b × c. We use these blocks to fill up a cubic box of edge 10. (a) Assume we have used at least 100 blocks. Show that there are two blocks, one of which is a translate of the other. (b) Find a number smaller than 100 (the smaller, the better) for which the above statement still holds.

(AoPS Online (AoPS Academy (AoPS & CASE A)