Art of Problem Solving

AoPS Community

1997 Austrian-Polish Competition

Austrian-Polish Competition 1997

www.artofproblemsolving.com/community/c1136449
by parmenides51, ShahinBJK, EQSon, lehungvietbao

- Individual

1 Let P be the intersection of lines l_{1} and l_{2}. Let S_{1} and S_{2} be two circles externally tangent at P and both tangent to l_{1}, and let T_{1} and T_{2} be two circles externally tangent at P and both tangent to l_{2}.
Let A be the second intersection of S_{1} and T_{1}, B that of S_{1} and T_{2}, C that of S_{2} and T_{1}, and D that of S_{2} and T_{2}. Show that the points A, B, C, D are concyclic if and only if l_{1} and l_{2} are perpendicular.

2 Each square of an $n \times m$ board is assigned a pair of coordinates (x, y) with $1 \leq x \leq m$ and $1 \leq y \leq n$. Let p and q be positive integers. A pawn can be moved from the square (x, y) to $\left(x^{\prime}, y^{\prime}\right)$ if and only if $\left|x-x^{\prime}\right|=p$ and $\left|y-y^{\prime}\right|=q$. There is a pawn on each square. We want to move each pawn at the same time so that no two pawns are moved onto the same square. In how many ways can this be done?

3 Numbers $\frac{49}{1}, \frac{49}{2}, \ldots, \frac{49}{97}$ are writen on a blackboard. Each time, we can replace two numbers (like a, b) with $2 a b-a-b+1$. After 96 times doing that prenominate action, one number will be left on the board. Find all the possible values fot that number.

4 In a trapezoid $A B C D$ with $A B / / C D$, the diagonals $A C$ and $B D$ intersect at point E. Let F and G be the orthocenters of the triangles $E B C$ and $E A D$. Prove that the midpoint of $G F$ lies on the perpendicular from E to $A B$.

Austrian-Polish 1997
2013 Rioplatense L1 P2
5 Let $p_{1}, p_{2}, p_{3}, p_{4}$ be four distinct primes. Prove that there is no polynomial $Q(x)=a x^{3}+b x^{2}+$ $c x+d$ with integer coefficients such that $\left|Q\left(p_{1}\right)\right|=\left|Q\left(p_{2}\right)\right|=\left|Q\left(p_{3}\right)\right|=\left|Q\left(p_{4}\right)\right|=3$.

6 Show that there is no integer-valued function on the integers such that $f(m+f(n))=f(m)-n$ for all m, n.

- Team

7 (a) Prove that $p^{2}+q^{2}+1>p(q+1)$ for any real numbers p, q.
(b) Determine the largest real constant b such that the inequality $p^{2}+q^{2}+1 \geq b p(q+1)$ holds for all real numbers p, q
(c) Determine the largest real constant c such that the inequality $p^{2}+q^{2}+1 \geq c p(q+1)$ holds for all integers p, q.

8 Let X be a set with n elements. Find the largest number of subsets of X, each with 3 elements, so that no two of them are disjoint.

9 Given a parallelepiped P, let V_{P} be its volume, S_{P} the area of its surface and L_{P} the sum of the lengths of its edges. For a real number $t \geq 0$, let P_{t} be the solid consisting of all points X whose distance from some point of P is at most t. Prove that the volume of the solid P_{t} is given by the formula $V\left(P_{t}\right)=V_{P}+S_{P} t+\frac{\pi}{4} L_{P} t^{2}+\frac{4 \pi}{3} t^{3}$.

