AoPS Community

1999 Austrian-Polish Competition

Austrian-Polish Competition 1999

www.artofproblemsolving.com/community/c1136451
by parmenides51, lehungvietbao

- Individual

1 Find the number of 6 -tuples $\left(A_{1}, A_{2}, \ldots, A_{6}\right)$ of subsets of $M=\{1, \ldots, n\}$ (not necessarily different) such that each element of M belongs to zero, three, or six of the subsets A_{1}, \ldots, A_{6}.

2 Find the best possible k, k^{\prime} such that

$$
k<\frac{v}{v+w}+\frac{w}{w+x}+\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+v}<k^{\prime}
$$

for all positive reals v, w, x, y, z.
3 Given an integer $n \geq 2$, find all sustems of n functions $f_{1}, \ldots, f_{n}: R \rightarrow R$ such that for all $x, y \in R$ $f_{1}(x)-f_{2}(x) f_{2}(y)+f_{1}(y)=0 f_{2}\left(x^{2}\right)-f_{3}(x) f_{3}(y)+f_{2}\left(y^{2}\right)=0 \ldots f_{n}\left(x^{n}\right)-f_{1}(x) f_{1}(y)+f_{n}\left(y^{n}\right)=0$

4 Three lines k, l, m are drawn through a point P inside a triangle $A B C$ such that k meets $A B$ at A_{1} and $A C$ at $A_{2} \neq A_{1}$ and $P A_{1}=P A_{2}, l$ meets $B C$ at B_{1} and $B A$ at $B_{2} \neq B_{1}$ and $P B_{1}=P B_{2}$, m meets $C A$ at C_{1} and $C B$ at $C_{2} \neq C_{1}$ and $P C_{1}=P C_{2}$. Prove that the lines k, l, m are uniquely determined by these conditions. Find point P for which the triangles $A A_{1} A_{2}, B B_{1} B_{2}, C C_{1} C_{2}$ have the same area and show that this point is unique.

5 A sequence of integers $\left(a_{n}\right)$ satisfies $a_{n+1}=a_{n}^{3}+1999$ for $n=1,2, \ldots$.
Prove that there exists at most one n for which a_{n} is a perfect square.
6 Solve in the nonnegative real numbers the system of equations
$x_{n}^{2}+x_{n} x_{n-1}+x_{n-1}^{4}=1$ for $n=1,2, \ldots, 1999, x_{0}=x_{1999}$.

- Team

$7 \quad$ Find all pairs (x, y) of positive integers such that $x^{x+y}=y^{y-x}$.
8 Let P, Q, R be points on the same side of a line g in the plane. Let M and N be the feet of the perpendiculars from P and Q to g respectively. Point S lies between the lines $P M$ and $Q N$ and satisfies and satisfies $P M=P S$ and $Q N=Q S$. The perpendicular bisectors of $S M$ and $S N$ meet in a point R. If the line $R S$ intersects the circumcircle of triangle $P Q R$ again at T, prove that S is the midpoint of $R T$.

Austrian-Polish 1999

9 A point in the cartesian plane with integer coordinates is called a lattice point. Consider the following one player game. A finite set of selected lattice points and finite set of selected segments is called a position in this game if the following hold:
(i) The endpoints of each selected segment are lattice points;
(ii) Each selected segment is parallel to a coordinate axis or to one of the lines $y= \pm x$,
(iii) Each selected segment contains exactly five lattice points, all of which are selected,
(iv) Every two selected segments have at most one common point.

A move in this game consists of selecting a lattice point and a segment such that the new set of selected lattice points and segments is a position. Prove or disprove that there exists an initial position such that the game can have infinitely many moves.

