AoPS Community

Austrian-Polish Competition 2000

www.artofproblemsolving.com/community/c1136452
by parmenides51, mathmdmb, s.m.a

- Individual

1 Find all polynomials $P(x)$ with real coefficients having the following property: There exists a positive integer n such that the equality

$$
\sum_{k=1}^{2 n+1}(-1)^{k}\left[\frac{k}{2}\right] P(x+k)=0
$$

holds for infinitely many real numbers x.
2 In a unit cube, $C G$ is the edge perpendicular to the face $A B C D$. Let O_{1} be the incircle of square $A B C D$ and O_{2} be the circumcircle of triangle $B D G$. Determine $\min \left\{X Y \mid X \in O_{1}, Y \in O_{2}\right\}$.

3 For each integer $n \geq 3$ solve in real numbers the system of equations:

$$
\left\{\begin{array}{l}
x_{1}^{3}=x_{2}+x_{3}+1 \\
\ldots \\
x_{n-1}^{3}=x_{n}+x_{1}+1 \\
x_{n}^{3}=x_{1}+x_{2}+1
\end{array}\right.
$$

$4 \quad$ Find all positive integers N having only prime divisors 2,5 such that $N+25$ is a perfect square.
$5 \quad$ For which integers $n \geq 5$ is it possible to color the vertices of a regular n-gon using at most 6 colors in such a way that any 5 consecutive vertices have different colors?

6 Consider the solid Q obtained by attaching unit cubes $Q_{1} \ldots Q_{6}$ at the six faces of a unit cube Q. Prove or disprove that the space can be filled up with such solids so that no two of them have a common interior point.

```
- Team
```

7 Triangle $A_{0} B_{0} C_{0}$ is given in the plane. Consider all triangles $A B C$ such that:
(i) The lines $A B, B C, C A$ pass through C_{0}, A_{0}, B_{0}, respectvely,
(ii) The triangles $A B C$ and $A_{0} B_{0} C_{0}$ are similar.

Find the possible positions of the circumcenter of triangle $A B C$.

Austrian-Polish 2000
8 In the plane are given 27 points, no three of which are collinear. Four of this points are vertices of a unit square, while the others lie inside the square. Prove that there are three points in this set forming a triangle with area not exceeding $1 / 48$.

9 If three nonnegative reals a, b, c satisfy $a+b+c=1$, prove that $2 \leq\left(1-a^{2}\right)^{2}+\left(1-b^{2}\right)^{2}+\left(1-c^{2}\right)^{2} \leq(1+a)(1+b)(1+c)$.

10 The plan of the castle in Baranow Sandomierski can be presented as the graph with 16 vertices on the picture.
A night guard plans a closed round along the edges of this graph.
(a) How many rounds passing through each vertex exactly once are there? The directions are irrelevant.
(b) How many non-selfintersecting rounds (taking directions into account) containing each edge of the graph exactly once are there?
https://cdn.artofproblemsolving.com/attachments/1/f/27ca05fc689fd8d873130db9d8cc52acf49bl png

