AoPS Community

www.artofproblemsolving.com/community/c1140513
by parmenides51, April

- Day 1

1 There are 2010 red cards and 2010 white cards. All of these 4020 cards are shuffled and dealt in two randomly to each of the 2010 round table players. The game consists of several rounds, each of which players simultaneously hand over cards to each other according to the following rules. If a player holds at least one red card, he passes one red card to the player sitting to his left, otherwise he transfers one white card to the left. The game ends after the round when each player has one red card and one white card. Determine as many rounds as possible.

2 Let $A B C D$ be a quadrilateral inscribled in a circle with the center O, P be the point of intersection of the diagonals $A C$ and $B D, B C \nVdash A D$. Rays $A B$ and $D C$ intersect at the point E. The circle with center I inscribed in the triangle $E B C$ touches $B C$ at point T_{1}. The E-excircle with center J in the triangle $E A D$ touches the side $A D$ at the point T_{2}. Line $I T_{1}$ and $J T_{2}$ intersect at Q. Prove that the points O, P, and Q lie on a straight line.

3 Find all functions from the set of real numbers into the set of real numbers which satisfy for all x, y the identity

$$
f(x f(x+y))=f(y f(x))+x^{2}
$$

Proposed by Japan

- Day 2

4 For the nonnegative numbers a, b, c prove the inequality:

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\sqrt{\frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}} \geq \frac{5}{2}
$$

$5 \quad$ Let $A B C$ be a triangle. The incircle of $A B C$ touches the sides $A B$ and $A C$ at the points Z and Y, respectively. Let G be the point where the lines $B Y$ and $C Z$ meet, and let R and S be points such that the two quadrilaterals $B C Y R$ and $B C S Z$ are parallelogram.
Prove that $G R=G S$.
Proposed by Hossein Karke Abadi, Iran
6 Find all pairs of odd integers a and b for which there exists a natural number c such that the number $\frac{c^{n}+1}{2^{n} a+b}$ is integer for all natural n.

- Day 3

7 Denote in the triangle $A B C$ by h the length of the height drawn from vertex A, and by $\alpha=\angle B A C$. Prove that the inequality $A B+A C \geq B C \cdot \cos \alpha+2 h \cdot \sin \alpha$. Are there triangles for which this inequality turns into equality?

8 Consider an infinite sequence of positive integers in which each positive integer occurs exactly once. Let $\left\{a_{n}\right\}, n \geq 1$ be such a sequence. We call it consistent if, for an arbitrary natural k and every natural n, m such that $a_{n}<a_{m}$, the inequality $a_{k n}<a_{k m}$ also holds. For example, the sequence $a_{n}=n$ is consistent .
a) Prove that there are consistent sequences other than $a_{n}=n$.
b) Are there consistent sequences for which $a_{n} \neq n, n \geq 2$?
c) Are there consistent sequences for which an $\neq n, n \geq 1$?

9 Five identical empty buckets of 2-liter capacity stand at the vertices of a regular pentagon. Cinderella and her wicked Stepmother go through a sequence of rounds: At the beginning of every round, the Stepmother takes one liter of water from the nearby river and distributes it arbitrarily over the five buckets. Then Cinderella chooses a pair of neighbouring buckets, empties them to the river and puts them back. Then the next round begins. The Stepmother goal's is to make one of these buckets overflow. Cinderella's goal is to prevent this. Can the wicked Stepmother enforce a bucket overflow?

Proposed by Gerhard Woeginger, Netherlands

- \quad Day 4

10 A positive integer N is called balanced, if $N=1$ or if N can be written as a product of an even number of not necessarily distinct primes. Given positive integers a and b, consider the polynomial P defined by $P(x)=(x+a)(x+b)$.
(a) Prove that there exist distinct positive integers a and b such that all the number $P(1), P(2), \ldots$, $P(50)$ are balanced.
(b) Prove that if $P(n)$ is balanced for all positive integers n, then $a=b$.

Proposed by Jorge Tipe, Peru
11 Let $A B C$ be the triangle in which $A B>A C$. Circle ω_{a} touches the segment of the $B C$ at point D, the extension of the segment $A B$ towards point B at the point F, and the extension of the segment $A C$ towards point C at the point E. The ray $A D$ intersects circle ω_{a} for second time at point M. Denote the circle circumscribed around the triangle $C D M$ by ω. Circle ω intersects the segment $D F$ at N . Prove that $F N>N D$.

12 Is there a positive integer n for which the following holds:
for an arbitrary rational r there exists an integer b and non-zero integers $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
r=b+\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}} ?
$$

