AoPS Community

www.artofproblemsolving.com/community/c1140514 by parmenides51, April, torbich

- Day 1

1 Given trapezoid $A B C D$ with parallel sides $A B$ and $C D$, assume that there exist points E on line $B C$ outside segment $B C$, and F inside segment $A D$ such that $\angle D A E=\angle C B F$. Denote by I the point of intersection of $C D$ and $E F$, and by J the point of intersection of $A B$ and $E F$. Let K be the midpoint of segment $E F$, assume it does not lie on line $A B$. Prove that I belongs to the circumcircle of $A B K$ if and only if K belongs to the circumcircle of $C D J$.

Proposed by Charles Leytem, Luxembourg

2 Let a, b, c are sides of a triangle. Find the least possible value k such that the following inequality always holds: $\left|\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}\right|<k$
(Vitaly Lishunov)
3 Let S be a set consisting of n elements, F a set of subsets of S consisting of 2^{n-1} subsets such that every three such subsets have a non-empty intersection.
a) Show that the intersection of all subsets of F is not empty.
b) If you replace the number of sets from 2^{n-1} with $2^{n-1}-1$, will the previous answer change?

- Day 2

4 Let n be some positive integer. Find all functions $f: R^{+} \rightarrow R$ (i.e., functions defined by the set of all positive real numbers with real values) for which equality holds $f\left(x^{n+1}+y^{n+1}\right)=$ $x^{n} f(x)+y^{n} f(y)$ for any positive real numbers x, y

5 Let A, B, C, D, E be consecutive points on a circle with center O such that $A C=B D=C E=$ $D O$. Let H_{1}, H_{2}, H_{3} be the orthocenters triangles $A C D, B C D, B C E$ respectively. Prove that the triangle $H_{1} H_{2} H_{3}$ is right.

6 Find all odd prime numbers p for which there exists a natural number g for which the sets

$$
A=\left\{\left(k^{2}+1\right) \bmod p \mid k=1,2, \ldots, \frac{p-1}{2}\right\}
$$

and

$$
B=\left\{g^{k} \bmod p \mid k=1,2, \ldots, \frac{p-1}{2}\right\}
$$

are equal.

- Day 3

7 Let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct positive integers, $n \geq 3$. Prove that there exist distinct indices i and j such that $a_{i}+a_{j}$ does not divide any of the numbers $3 a_{1}, 3 a_{2}, \ldots, 3 a_{n}$.

Proposed by Mohsen Jamaali, Iran
8 Two circles γ_{1}, γ_{2} are given, with centers at points O_{1}, O_{2} respectively. Select a point K on circle γ_{2} and construct two circles, one γ_{3} that touches circle γ_{2} at point K and circle γ_{1} at a point A, and the other γ_{4} that touches circle γ_{2} at point K and circle γ_{1} at a point B. Prove that, regardless of the choice of point K on circle γ_{2}, all lines $A B$ pass through a fixed point of the plane.
$9 \quad$ Let $S \subseteq \mathbb{R}$ be a set of real numbers. We say that a pair (f, g) of functions from S into S is a Spanish Couple on S, if they satisfy the following conditions:
(i) Both functions are strictly increasing, i.e. $f(x)<f(y)$ and $g(x)<g(y)$ for all $x, y \in S$ with $x<y$;
(ii) The inequality $f(g(g(x)))<g(f(x))$ holds for all $x \in S$.

Decide whether there exists a Spanish Couple - on the set $S=\mathbb{N}$ of positive integers; - on the set $S=\left\{a-\frac{1}{b}: a, b \in \mathbb{N}\right\}$

Proposed by Hans Zantema, Netherlands

- Day 4

10 Let $A B C D$ be a convex quadrilateral and let P and Q be points in $A B C D$ such that $P Q D A$ and $Q P B C$ are cyclic quadrilaterals. Suppose that there exists a point E on the line segment $P Q$ such that $\angle P A E=\angle Q D E$ and $\angle P B E=\angle Q C E$. Show that the quadrilateral $A B C D$ is cyclic.

Proposed by John Cuya, Peru

11 Suppose that integers are given $m<n$. Consider a spreadsheet of size $n \times n$, whose cells arbitrarily record all integers from 1 to n^{2}. Each row of the table is colored in yellow m the largest elements. Similarly, the blue colors the m of the largest elements in each column. Find the smallest number of cells that are colored yellow and blue at a time

12 Denote an acute-angle $\triangle A B C$ with sides a, b, c respectively by H_{a}, H_{b}, H_{c} the feet of altitudes
h_{a}, h_{b}, h_{c}. Prove the inequality:

$$
\frac{h_{a}^{2}}{a^{2}-C H_{a}^{2}}+\frac{h_{b}^{2}}{b^{2}-A H_{b}^{2}}+\frac{h_{c}^{2}}{c^{2}-B H_{c}^{2}} \geq 3
$$

(Dmitry Petrovsky)

