

AoPS Community

2009 Ukraine Team Selection Test

www.artofproblemsolving.com/community/c1140514

by parmenides51, April, torbich

-	Day 1
---	-------

1 Given trapezoid ABCD with parallel sides AB and CD, assume that there exist points E on line BC outside segment BC, and F inside segment AD such that $\angle DAE = \angle CBF$. Denote by I the point of intersection of CD and EF, and by J the point of intersection of AB and EF. Let K be the midpoint of segment EF, assume it does not lie on line AB. Prove that I belongs to the circumcircle of ABK if and only if K belongs to the circumcircle of CDJ.

Proposed by Charles Leytem, Luxembourg

- 2 Let *a*, *b*, *c* are sides of a triangle. Find the least possible value *k* such that the following inequality always holds: $\left|\frac{a-b}{a+b} + \frac{b-c}{b+c} + \frac{c-a}{c+a}\right| < k$ (*Vitaly Lishunov*)
- 3 Let S be a set consisting of n elements, F a set of subsets of S consisting of 2ⁿ⁻¹ subsets such that every three such subsets have a non-empty intersection.
 a) Show that the intersection of all subsets of F is not empty.
 b) If you replace the number of sets from 2ⁿ⁻¹ with 2ⁿ⁻¹ 1, will the previous answer change?
- Day 2
- 4 Let *n* be some positive integer. Find all functions $f : R^+ \to R$ (i.e., functions defined by the set of all positive real numbers with real values) for which equality holds $f(x^{n+1} + y^{n+1}) = x^n f(x) + y^n f(y)$ for any positive real numbers x, y
- 5 Let A, B, C, D, E be consecutive points on a circle with center O such that AC = BD = CE = DO. Let H_1, H_2, H_3 be the orthocenters triangles ACD, BCD, BCE respectively. Prove that the triangle $H_1H_2H_3$ is right.
- **6** Find all odd prime numbers *p* for which there exists a natural number *g* for which the sets

$$A = \left\{ \left(k^2 + 1\right) \mod p | k = 1, 2, \dots, \frac{p-1}{2} \right\}$$

and

$$B = \left\{ g^k \bmod p | k = 1, 2, ..., \frac{p-1}{2} \right\}$$

AoPS Community

are equal.

-	Day 3
7	Let a_1, a_2, \ldots, a_n be distinct positive integers, $n \ge 3$. Prove that there exist distinct indices i and j such that $a_i + a_j$ does not divide any of the numbers $3a_1, 3a_2, \ldots, 3a_n$.
	Proposed by Mohsen Jamaali, Iran
8	Two circles γ_1, γ_2 are given, with centers at points O_1, O_2 respectively. Select a point K on circle γ_2 and construct two circles, one γ_3 that touches circle γ_2 at point K and circle γ_1 at a point A , and the other γ_4 that touches circle γ_2 at point K and circle γ_1 at a point B . Prove that, regardless of the choice of point K on circle γ_2 , all lines AB pass through a fixed point of the plane.
9	Let $S \subseteq \mathbb{R}$ be a set of real numbers. We say that a pair (f, g) of functions from S into S is a <i>Spanish Couple</i> on S , if they satisfy the following conditions: (i) Both functions are strictly increasing, i.e. $f(x) < f(y)$ and $g(x) < g(y)$ for all $x, y \in S$ with $x < y$;
	(ii) The inequality $f(g(g(x))) < g(f(x))$ holds for all $x \in S$.
	Decide whether there exists a Spanish Couple - on the set $S = \mathbb{N}$ of positive integers; - on the set $S = \{a - \frac{1}{b} : a, b \in \mathbb{N}\}$
	Proposed by Hans Zantema, Netherlands
-	Day 4
10	Let $ABCD$ be a convex quadrilateral and let P and Q be points in $ABCD$ such that $PQDA$ and $QPBC$ are cyclic quadrilaterals. Suppose that there exists a point E on the line segment PQ such that $\angle PAE = \angle QDE$ and $\angle PBE = \angle QCE$. Show that the quadrilateral $ABCD$ is cyclic.
	Proposed by John Cuya, Peru
11	Suppose that integers are given $m < n$. Consider a spreadsheet of size $n \times n$, whose cells arbitrarily record all integers from 1 to n^2 . Each row of the table is colored in yellow m the largest elements. Similarly, the blue colors the m of the largest elements in each column. Find

12 Denote an acute-angle $\triangle ABC$ with sides a, b, c respectively by H_a, H_b, H_c the feet of altitudes

the smallest number of cells that are colored yellow and blue at a time

AoPS Community

 h_a, h_b, h_c . Prove the inequality:

$$\frac{h_a^2}{a^2 - CH_a^2} + \frac{h_b^2}{b^2 - AH_b^2} + \frac{h_c^2}{c^2 - BH_c^2} \ge 3$$

(Dmitry Petrovsky)

Act of Problem Solving is an ACS WASC Accredited School.