AoPS Community

Benelux 2020

www.artofproblemsolving.com/community/c1141624
by Lepuslapis

1 Find all positive integers d with the following property: there exists a polynomial P of degree d with integer coefficients such that $|P(m)|=1$ for at least $d+1$ different integers m.

2 Let N be a positive integer. A collection of $4 N^{2}$ unit tiles with two segments drawn on them as shown is assembled into a $2 N \times 2 N$ board. Tiles can be rotated.

The segments on the tiles define paths on the board. Determine the least possible number and the largest possible number of such paths.
[i]For example, there are 9 paths on the 4×4 board shown below.[/i]

$3 \quad$ Let $A B C$ be a triangle. The circle ω_{A} through A is tangent to line $B C$ at B. The circle ω_{C} through C is tangent to line $A B$ at B. Let ω_{A} and ω_{C} meet again at D. Let M be the midpoint of line segment $[B C]$, and let E be the intersection of lines $M D$ and $A C$. Show that E lies on ω_{A}.
$4 \quad$ A divisor d of a positive integer n is said to be a close divisor of n if $\sqrt{n}<d<2 \sqrt{n}$. Does there exist a positive integer with exactly 2020 close divisors?

