AoPS Community

Argentina National Olympiad 2008

www.artofproblemsolving.com/community/c1142401
by parmenides51, uglysolutions

- Level 3
- \quad Day 1

1101 positive integers are written on a line. Prove that we can write signs + , signs \times and parenthesis between them, without changing the order of the numbers, in such a way that the resulting expression makes sense and the result is divisible by 16!.

2 In every cell of a 60×60 board is written a real number, whose absolute value is less or equal than 1 . The sum of all numbers on the board equals 600 .
Prove that there is a 12×12 square in the board such that the absolute value of the sum of all numbers on it is less or equal than 24 .

3 On a circle of center O, let A and B be points on the circle such that $\angle A O B=120^{\circ}$. Point C lies on the small arc $A B$ and point D lies on the segment $A B$. Let also $A D=2, B D=1$ and $C D=\sqrt{2}$. Calculate the area of triangle $A B C$.

- \quad Day 2

4 Find all real numbers x which satisfy the following equation: $[2 x]+[3 x]+[7 x]=2008$.
Note: $[x]$ means the greatest integer less or equal than x.
5 Find all perfect powers whose last 4 digits are $2,0,0,8$, in that order.
6 Consider a board of $a \times b$, with a and b integers greater than or equal to 2 . Initially their squares are colored black and white like a chess board. The permitted operation consists of choosing two squares with a common side and recoloring them as follows: a white square becomes black; a black box turns green; a green box turns white. Determine for which values of a and b it is possible, by a succession of allowed operations, to make all the squares that were initially white end black and all the squares that were initially black end white.

Clarification: Initially there are no green squares, but they appear after the first operation.

