Art of Problem Solving

AoPS Community

Saint Petersburg Mathematical Olympiad 2020
www.artofproblemsolving.com/community/c1148116
by XbenX

- \quad Grade 11

1. A positive integer is called hypotenuse if it can be represented as a sum of two squares of nonnegative integers.
Prove that any natural number greater than 10 is the difference of two hypotenuse numbers.
2. A short-sighted rook is a rook that beats all squares in the same column and in the same row for which he can not go more than 60 -steps.
What is the maximal amount of short-sighted rooks that don't beat each other that can be put on a 100×100 chessboard.
3. $B B_{1}$ is the angle bisector of $\triangle A B C$, and I is its incenter. The perpendicular bisector of segment $A C$ intersects the circumcircle of $\triangle A I C$ at D and E. Point F is on the segment $B_{1} C$ such that $A B_{1}=C F$. Prove that the four points B, D, E and F are concyclic.
4. The sum $\frac{2}{3 \cdot 6}+\frac{2 \cdot 5}{3 \cdot 6 \cdot 9}+\ldots+\frac{2 \cdot 5 \cdot \ldots \cdot 2015}{3 \cdot 6 \cdot 9 \ldots . .2019}$ is written as a decimal number. Find the first digit after the decimal point.
5. The altitudes $B B_{1}$ and $C C_{1}$ of the acute triangle $\triangle A B C$ intersect at H. The circle centered at O_{b} passes through points A, C_{1}, and the midpoint of $B H$. The circle centered at O_{c} passes through A, B_{1} and the midpoint of $C H$. Prove that $B_{1} O_{b}+C_{1} O_{c}>\frac{B C}{4}$
6. The sequence a_{n} is given as

$$
a_{1}=1, a_{2}=2 \quad \text { and } \quad a_{n+2}=a_{n}\left(a_{n+1}+1\right) \quad \forall n \geq 1
$$

Prove that $a_{a_{n}}$ is divisible by $\left(a_{n}\right)^{n}$ for $n \geq 100$.
$7 \quad N$ oligarchs built a country with N cities with each one of them owning one city. In addition, each oligarch built some roads such that the maximal amount of roads an oligarch can build between two cities is 1 (note that there can be more than 1 road going through two cities, but they would belong to different oligarchs).
A total of d roads were built. Some oligarchs wanted to create a corporation by combining their cities and roads so that from any city of the corporation you can go to any city of the corporation using only corporation roads (roads can go to other cities outside corporation) but it turned out that no group of less than N oligarchs can create a corporation. What is the maximal amount that d can have?

- \quad Grade 10

1. Andryusha has 100 stones of different weight and he can distinguish the stones by appearance, but does not know their weight. Every evening, Andryusha can put exactly 10 stones on the table and at night the brownie will order them in increasing weight. But, if the drum also lives in the house then surely he will in the morning change the places of some 2 stones.Andryusha knows all about this but does not know if there is a drum in his house. Can he find out?
2. Find all positive integers n such that the sum of the squares of the five smallest divisors of n is a square.
3. On the side $A D$ of the convex quadrilateral $A B C D$ with an acute angle at B, a point E is marked. It is known that $\angle C A D=\angle A D C=\angle A B E=\angle D B E$.
(Grade 9 version) Prove that $B E+C E<A D$.
(Grade 10 version) Prove that $\triangle B C E$ is isosceles.(Here the condition that $\angle B$ is acute is not necessary.)
4. Let m be a given positive integer. Prove that there exists a positive integer k such that it holds

$$
1 \leq \frac{1^{m}+2^{m}+3^{m}+\ldots+(k-1)^{m}}{k^{m}}<2
$$

5. Rays ℓ, ℓ_{1}, ℓ_{2} have the same starting point O, such that the angle between ℓ and ℓ_{2} is acute and the ray ℓ_{1} lies inside this angle. The ray ℓ contains a fixed point of F and an arbitrary point L. Circles passing through F and L and tangent to ℓ_{1} at L_{1}, and passing through F and L and tangent to ℓ_{2} at L_{2}. Prove that the circumcircle of $\triangle F L_{1} L_{2}$ passes through a fixed point other than F independent on L.
6. On a social network, no user has more than ten friends (the state "friendship" is symmetrical). The network is connected: if, upon learning interesting news a user starts sending it to its friends, and these friends to their own friends and so on, then at the end, all users hear about the news.
Prove that the network administration can divide users into groups so that the following conditions are met:

- each user is in exactly one group
- each group is connected in the above sense
- one of the groups contains from 1 to 100 members and the remaining from 100 to 900 .

7. The exam has 25 topics, each of which has 8 questions. On a test, there are 4 questions of different topics.
Is it possible to make 50 tests so that each question was asked exactly once, and for any two topics there is a test where are questions of both topics?

- \quad Grade 9

1. What is the maximal number of solutions can the equation have

$$
\max \left\{a_{1} x+b_{1}, a_{2} x+b_{2}, \ldots, a_{10} x+b_{10}\right\}=0
$$

where $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{10}, b_{10}$ are real numbers, all a_{i} not equal to 0 .
2. For the triple (a, b, c) of positive integers we say it is interesting if $c^{2}+1 \mid\left(a^{2}+1\right)\left(b^{2}+1\right)$ but none of the $a^{2}+1, b^{2}+1$ are divisible by $c^{2}+1$.
Let (a, b, c) be an interesting triple, prove that there are positive integers u, v such that (u, v, c) is interesting and $u v<c^{3}$.

3. Same as Grade 10 P3

4. On a table with 25 columns and 300 rows, Kostya painted all its cells in three colors. Then, Lesha, looking at the table, for each row names one of the three colors and marks in that row all cells of that color (if there are no cells of that color in that row, he does nothing). After that, all columns that have at least a marked square will be deleted.
Kostya wants to be left as few as possible columns in the table, and Lesha wants there to be as many as possible columns in the table. What is the largest number of columns Lesha can guarantee to leave?
5. Point I_{a} is the A-excircle center of $\triangle A B C$ which is tangent to $B C$ at X. Let A^{\prime} be diametrically opposite point of A with respect to the circumcircle of $\triangle A B C$. On the segments $I_{a} X, B A^{\prime}$ and $C A^{\prime}$ are chosen respectively points Y, Z and T such that $I_{a} Y=B Z=C T=r$ where r is the inradius of $\triangle A B C$.
Prove that the points X, Y, Z and T are concyclic.
6. The points $(1,1),(2,3),(4,5)$ and $(999,111)$ are marked in the coordinate system. We continue to mark points in the following way:
-If points (a, b) are marked then (b, a) and $(a-b, a+b)$ can be marked -If points (a, b) and (c, d) are marked then so can be $(a d+b c, 4 a c-4 b d)$.
Can we, after some finite number of these steps, mark a point belonging to the line $y=2 x$.
7. Let G be a graph with 400 vertices. For any edge $A B$ we call a cuttlefish the set of all edges from A and B (including $A B$). Each edge of the graph is assigned a value of 1 or -1 . It is known that the sum of edges at any cuttlefish is greater than or equal to 1 .
Prove that the sum of the numbers at all edges is at least -10^{4}.
