Art of Problem Solving

AoPS Community

Switzerland Team Selection Test 2019

www.artofproblemsolving.com/community/c1159241
by matinyousefi, Functional, Neothehero

- Day 1

1 Let $A B C$ be a triangle and D, E, F be the foots of altitudes drawn from A, B, C respectively. Let H be the orthocenter of $A B C$. Lines $E F$ and $A D$ intersect at G. Let K the point on circumcircle of $A B C$ such that $A K$ is a diameter of this circle. $A K$ cuts $B C$ in M. Prove that $G M$ and $H K$ are parallel.

2 Find the largest prime p such that there exist positive integers a, b satisfying

$$
p=\frac{b}{2} \sqrt{\frac{a-b}{a+b}} .
$$

3 Given any set S of positive integers, show that at least one of the following two assertions holds:
(1) There exist distinct finite subsets F and G of S such that $\sum_{x \in F} 1 / x=\sum_{x \in G} 1 / x$;
(2) There exists a positive rational number $r<1$ such that $\sum_{x \in F} 1 / x \neq r$ for all finite subsets F of S.

- Day 2

4 Let p be a prime number. Find all polynomials P with integer coefficients with the following properties: $(a) P(x)>x$ for all positive integers x. (b) The sequence defined by $p_{0}:=p, p_{n+1}:=$ $P\left(p_{n}\right)$ for all positive integers n, satisfies the property that for all positive integers m there exists some $l \geq 0$ such that $m \mid p_{l}$.

5 Let $A B C$ be a triangle with $A B=A C$, and let M be the midpoint of $B C$. Let P be a point such that $P B<P C$ and $P A$ is parallel to $B C$. Let X and Y be points on the lines $P B$ and $P C$, respectively, so that B lies on the segment $P X, C$ lies on the segment $P Y$, and $\angle P X M=$ $\angle P Y M$. Prove that the quadrilateral $A P X Y$ is cyclic.

6 Let (a, b) be a pair of natural numbers. Henning and Paul play the following game. At the beginning there are two piles of a and b coins respectively. We say that (a, b) is the starting position of the game. Henning and Paul play with the following rules: • They take turns alternatively where Henning begins. - In every step each player either takes a positive integer number of coins from one of the two piles or takes same natural number of coins from both piles. • The

AoPS Community

2019 Switzerland Team Selection Test

player how take the last coin wins.
Let A be the set of all positive integers like a for which there exists a positive integer $b<a$ such that Paul has a wining strategy for the starting position (a, b). Order the elements of A to construct a sequence $a_{1}<a_{2}<a_{3}<\ldots(a)$ Prove that A has infinity many elements. (b) Prove that the sequence defined by $m_{k}:=a_{k+1}-a_{k}$ will never become periodic. (This means the sequence $m_{k_{0}+k}$ will not be periodic for any choice of k_{0})

- Day 3

7 Prove that for all positive integers n there are positive integers a, b such that

$$
n \mid 4 a^{2}+9 b^{2}-1
$$

8 Let k, n, r be positive integers and $r<n$. Quirin owns $k n+r$ black and $k n+r$ white socks. He want to clean his cloths closet such there does not exist $2 n$ consecutive socks n of which black and the other n white. Prove that he can clean his closet in the desired manner if and only if $r \geq k$ and $n>k+r$.

9 Let $A B C$ be an acute triangle with $A B<A C . E, F$ are foots of the altitudes drawn from B, C respectively. Let M be the midpoint of segment $B C$. The tangent at A to the circumcircle of $A B C$ cuts $B C$ in P and $E F$ cuts the parallel to $B C$ from A at Q. Prove that $P Q$ is perpendicular to $A M$.

- Day 4

10 Let $n \geq 5$ be an integer. A shop sells balls in n different colors. Each of $n+1$ children bought three balls with different colors, but no two children bought exactly the same color combination. Show that there are at least two children who bought exactly one ball of the same color.

11 Let n be a positive integer. Determine whether there exists a positive real number $\epsilon>0$ (depending on n) such that for all positive real numbers $x_{1}, x_{2}, \ldots, x_{n}$, the inequality

$$
\sqrt[n]{x_{1} x_{2} \cdots x_{n}} \leq(1-\epsilon) \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}+\epsilon \frac{n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}}
$$

holds.
12 Define the sequence $a_{0}, a_{1}, a_{2}, \ldots$ by $a_{n}=2^{n}+2^{\lfloor n / 2\rfloor}$. Prove that there are infinitely many terms of the sequence which can be expressed as a sum of (two or more) distinct terms of the sequence, as well as infinitely many of those which cannot be expressed in such a way.

