AoPS Community

www.artofproblemsolving.com/community/c116578
by rkm0959

1 Let $V=[(x, y, z) \mid 0 \leq x, y, z \leq 2008]$ be a set of points in a 3-D space.
If the distance between two points is either $1, \sqrt{2}, 2$, we color the two points differently. How many colors are needed to color all points in V ?

2 We have $x_{i}>i$ for all $1 \leq i \leq n$.
Find the minimum value of $\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{\sum_{i=1}^{n} \sqrt{x_{i}^{2}-i^{2}}}$
3 Points A, B, C, D, E lie in a counterclockwise order on a circle O, and $A C=C E P=B D \cap A C$, $Q=B D \cap C E$
Let O_{1} be the circle which is tangent to $\overline{A P}, \overline{B P}$ and arc $A B$ (which doesn't contain C)
Let O_{2} be the circle which is tangent $\overline{D Q}, \overline{E Q}$ and arc $D E$ (which doesn't contain C)
Let $O_{1} \cap O=R, O_{2} \cap O=S, R P \cap Q S=X$
Prove that $X C$ bisects $\angle A C E$
4 We define A, B, C as a partition of \mathbb{N} if A, B, C satisfies the following.
(i) $A, B, C \neq \phi$ (ii) $A \cap B=B \cap C=C \cap A=\phi$ (iii) $A \cup B \cup C=\mathbb{N}$.

Prove that the partition of \mathbb{N} satisfying the following does not exist.
(i) $\forall a \in A, b \in B$, we have $a+b+2008 \in C$
(ii) $\forall b \in B, c \in C$, we have $b+c+2008 \in A$
(iii) $\forall c \in C, a \in A$, we have $c+a+2008 \in B$
$5 \quad$ Let p be a prime where $p \geq 5$.
Prove that $\exists n$ such that $1+\left(\sum_{i=2}^{n} \frac{1}{i^{2}}\right)\left(\prod_{i=2}^{n} i^{2}\right) \equiv 0(\bmod p)$
6 Let $A B C D$ be inscribed in a circle ω.
Let the line parallel to the tangent to ω at A and passing D meet ω at E. F is a point on ω such that lies on the different side of E wrt $C D$.
If $A E \cdot A D \cdot C F=B E \cdot B C \cdot D F$ and $\angle C F D=2 \angle A F B$,
Show that the tangent to ω at A, B and line $E F$ concur at one point.
(A and E lies on the same side of $C D$)
$7 \quad$ Prove that the only function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the following is $f(x)=x$.
(i) $\forall x \neq 0, f(x)=x^{2} f\left(\frac{1}{x}\right)$.
(ii) $\forall x, y, f(x+y)=f(x)+f(y)$.
(iii) $f(1)=1$.

8 For fixed positive integers s, t, define a_{n} as the following. $a_{1}=s, a_{2}=t$, and $\forall n \geq 1, a_{n+2}=$ $\left\lfloor\sqrt{a_{n}+(n+2) a_{n+1}+2008}\right\rfloor$.
Prove that the solution set of $a_{n} \neq n, n \in \mathbb{N}$ is finite.

