

AoPS Community

- www.artofproblemsolving.com/community/c116578 by rkm0959
 - 1 Let $V = [(x, y, z)|0 \le x, y, z \le 2008]$ be a set of points in a 3-D space. If the distance between two points is either $1, \sqrt{2}, 2$, we color the two points differently. How many colors are needed to color all points in V?
 - **2** We have $x_i > i$ for all $1 \le i \le n$. Find the minimum value of $\frac{(\sum_{i=1}^n x_i)^2}{\sum_{i=1}^n \sqrt{x_i^2 - i^2}}$
 - **3** Points A, B, C, D, E lie in a counterclockwise order on a circle O, and $AC = CEP = BD \cap AC$, $Q = BD \cap CE$ Let O_1 be the circle which is tangent to $\overline{AP}, \overline{BP}$ and arc AB (which doesn't contain C) Let O_2 be the circle which is tangent $\overline{DQ}, \overline{EQ}$ and arc DE (which doesn't contain C) Let $O_1 \cap O = R, O_2 \cap O = S, RP \cap QS = X$ Prove that XC bisects $\angle ACE$
 - 4 We define A, B, C as a *partition* of \mathbb{N} if A, B, C satisfies the following. (i) $A, B, C \neq \phi$ (ii) $A \cap B = B \cap C = C \cap A = \phi$ (iii) $A \cup B \cup C = \mathbb{N}$.

Prove that the partition of \mathbb{N} satisfying the following does not exist. (i) $\forall a \in A, b \in B$, we have $a + b + 2008 \in C$ (ii) $\forall b \in B, c \in C$, we have $b + c + 2008 \in A$ (iii) $\forall c \in C, a \in A$, we have $c + a + 2008 \in B$

- **5** Let p be a prime where $p \ge 5$. Prove that $\exists n$ such that $1 + (\sum_{i=2}^{n} \frac{1}{i^2})(\prod_{i=2}^{n} i^2) \equiv 0 \pmod{p}$
- 6 Let ABCD be inscribed in a circle ω.
 Let the line parallel to the tangent to ω at A and passing D meet ω at E. F is a point on ω such that lies on the different side of E wrt CD.
 If AE · AD · CF = BE · BC · DF and ∠CFD = 2∠AFB,
 Show that the tangent to ω at A, B and line EF concur at one point.
 (A and E lies on the same side of CD)
- 7 Prove that the only function $f : \mathbb{R} \to \mathbb{R}$ satisfying the following is f(x) = x. (i) $\forall x \neq 0, f(x) = x^2 f(\frac{1}{x})$. (ii) $\forall x, y, f(x+y) = f(x) + f(y)$. (iii) f(1) = 1.

AoPS Community

2008 Korean National Olympiad

8 For fixed positive integers s, t, define a_n as the following. $a_1 = s, a_2 = t$, and $\forall n \ge 1$, $a_{n+2} = \lfloor \sqrt{a_n + (n+2)a_{n+1} + 2008} \rfloor$. Prove that the solution set of $a_n \ne n, n \in \mathbb{N}$ is finite.

Act of Problem Solving is an ACS WASC Accredited School.