2019 Vietnam TST



## **AoPS Community**

## www.artofproblemsolving.com/community/c1171086

by CheshireOrb, matinyousefi

**P1** In a country there are  $n \ge 2$  cities. Any two cities has exactly one two-way airway. The government wants to license several airlines to take charge of these airways with such following conditions:

i) Every airway can be licensed to exactly one airline.

ii) By choosing one arbitrary airline, we can move from a city to any other cities, using only flights from this airline.

What is the maximum number of airlines that the government can license to satisfy all of these conditions?

**P2** For each positive integer *n*, show that the polynomial:

$$P_n(x) = \sum_{k=0}^n 2^k \binom{2n}{2k} x^k (x-1)^{n-k}$$

has n real roots.

**P3** Given an acute scalene triangle ABC inscribed in circle (O). Let H be its orthocenter and M be the midpoint of BC. Let D lie on the opposite rays of HA so that BC = 2DM. Let D' be the reflection of D through line BC and X be the intersection of AO and MD.

a) Show that AM bisects D'X.

b) Similarly, we define the points E, F like D and Y, Z like X. Let S be the intersection of tangent lines from B, C with respect to (O). Let G be the projection of the midpoint of AS to the line AO. Show that there exists a point with the same power to all the circles (BEY), (CFZ), (SGO) and (O).

**P4** Find all triplets of positive integers (x, y, z) such that  $2^x + 1 = 7^y + 2^z$ .

**P5** Given a scalene triangle ABC inscribed in the circle (O). Let (I) be its incircle and BI, CI cut AC, AB at E, F respectively. A circle passes through E and touches OB at B cuts (O) again at M. Similarly, a circle passes through F and touches OC at C cuts (O) again at N. ME, NF cut (O) again at P, Q. Let K be the intersection of EF and BC and let PQ cuts BC and EF at G, H, respectively. Show that the median correspond to G of the triangle GHK is perpendicular to IO.

## **AoPS Community**

**P6** In the real axis, there is bug standing at coordinate x = 1. Each step, from the position x = a, the bug can jump to either x = a + 2 or  $x = \frac{a}{2}$ . Show that there are precisely  $F_{n+4} - (n+4)$  positions (including the initial position) that the bug can jump to by at most *n* steps.

Recall that  $F_n$  is the  $n^{th}$  element of the Fibonacci sequence, defined by  $F_0 = F_1 = 1$ ,  $F_{n+1} = F_n + F_{n-1}$  for all  $n \ge 1$ .

AoPS Online 🏟 AoPS Academy 🏟 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.