AoPS Community

Greece Team Selection Test 2019

www.artofproblemsolving.com/community/c1193518 by parmenides51, stergiu, Neothehero

1 Given an equilateral triangle with sidelength $k \mathrm{~cm}$. With lines parallel to it's sides, we split it into k^{2} small equilateral triangles with sidelength 1 cm . This way, a triangular grid is created. In every small triangle of sidelength 1 cm , we place exactly one integer from 1 to k^{2} (included), such that there are no such triangles having the same numbers. With vertices the points of the grid, regular hexagons are defined of sidelengths 1 cm . We shall name as value of the hexagon, the sum of the numbers that lie on the 6 small equilateral triangles that the hexagon consists of. Find (in terms of the integer $k>4$) the maximum and the minimum value of the sum of the values of all hexagons.

2 Let a triangle $A B C$ inscribed in a circle Γ with center O. Let I the incenter of triangle $A B C$ and D, E, F the contact points of the incircle with sides $B C, A C, A B$ of triangle $A B C$ respectively . Let also S the foot of the perpendicular line from D to the line $E F$. Prove that line $S I$ passes from the antidiametric point N of A in the circle $\Gamma .(A N$ is a diametre of the circle $\Gamma)$.
$3 \quad$ Let $n>1$ be a positive integer. Each cell of an $n \times n$ table contains an integer. Suppose that the following conditions are satisfied:

- Each number in the table is congruent to 1 modulo n.
- The sum of numbers in any row, as well as the sum of numbers in any column, is congruent to n modulo n^{2}.

Let R_{i} be the product of the numbers in the $i^{\text {th }}$ row, and C_{j} be the product of the number in the $j^{\text {th }}$ column. Prove that the sums $R_{1}+\ldots R_{n}$ and $C_{1}+\ldots C_{n}$ are congruent modulo n^{4}.

4 Find all functions $f:(0, \infty) \mapsto \mathbb{R}$ such that $\left(y^{2}+1\right) f(x)-y f(x y)=y f\left(\frac{x}{y}\right)$, for every $x, y>0$.

