APMO 2020

www.artofproblemsolving.com/community/c1195713
by a1267ab
$1 \quad$ Let Γ be the circumcircle of $\triangle A B C$. Let D be a point on the side $B C$. The tangent to Γ at A intersects the parallel line to $B A$ through D at point E. The segment $C E$ intersects Γ again at F. Suppose B, D, F, E are concyclic. Prove that $A C, B F, D E$ are concurrent.

2 Show that $r=2$ is the largest real number r which satisfies the following condition:
If a sequence a_{1}, a_{2}, \ldots of positive integers fulfills the inequalities

$$
a_{n} \leq a_{n+2} \leq \sqrt{a_{n}^{2}+r a_{n+1}}
$$

for every positive integer n, then there exists a positive integer M such that $a_{n+2}=a_{n}$ for every $n \geq M$.

3 Determine all positive integers k for which there exist a positive integer m and a set S of positive integers such that any integer $n>m$ can be written as a sum of distinct elements of S in exactly k ways.
$4 \quad$ Let \mathbb{Z} denote the set of all integers. Find all polynomials $P(x)$ with integer coefficients that satisfy the following property:

For any infinite sequence a_{1}, a_{2}, \ldots of integers in which each integer in \mathbb{Z} appears exactly once, there exist indices $i<j$ and an integer k such that $a_{i}+a_{i+1}+\cdots+a_{j}=P(k)$.

5 Let $n \geq 3$ be a fixed integer. The number 1 is written n times on a blackboard. Below the blackboard, there are two buckets that are initially empty. A move consists of erasing two of the numbers a and b, replacing them with the numbers 1 and $a+b$, then adding one stone to the first bucket and $\operatorname{gcd}(a, b)$ stones to the second bucket. After some finite number of moves, there are s stones in the first bucket and t stones in the second bucket, where s and t are positive integers. Find all possible values of the ratio $\frac{t}{s}$.

