AoPS Community

www.artofproblemsolving.com/community/c1199471
by Kamran011

1 Let F be the set of all n-tuples $\left(A_{1}, A_{2},, A_{n}\right)$ such that each A_{i} is a subset of $1,2,2019$. Let $|A|$ denote the number of elements o the set A. Find

$$
\sum_{\left(A_{1}, A_{n}\right) \in F}\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|
$$

2 Consider two circles k_{1}, k_{2} touching at point T.
A line touches k_{2} at point X and intersects k_{1} at points A, B where B lies between A and X. Let S be the second intersection point of k_{1} with $X T$. On the arc TS not containing A and B, a point C is choosen.
Let $C Y$ be the tangent line to k_{2} with $Y \in k_{2}$, such that the segment $C Y$ doesn't intersect the segment $S T$.If $I=X Y \cap S C$, prove that :
(a) the points C, T, Y, I are concyclic. (b) I is the A - excenter of $\triangle A B C$
$3 \quad$ Find all functions $u: R \rightarrow R$ for which there exists a strictly monotonic function $f: R \rightarrow R$ such that $f(x+y)=f(x) u(y)+f(y)$
for all $x, y \in \mathbb{R}$
4 Consider an odd prime number p and p consecutive positive integers m_{1}, m_{2}, m_{p}. Choose a permutation σ of $1,2,, p$.
Show that there exist two different numbers $k, l \in(1,2,, p)$ such that $p \mid m_{k} \cdot m_{\sigma(k)}-m_{l} \cdot m_{\sigma(l)}$
$5 \quad$ Let x, y, z be positive real numbers such that $x^{4}+y^{4}+z^{4}=1$.
Determine with proof the minimum value of
$\frac{x^{3}}{1-x^{8}}+\frac{y^{3}}{1-y^{8}}+\frac{z^{3}}{1-z^{8}}$
6 Define a sequence $a_{n n \geq 1}$ such that $a_{1}=1, a_{2}=2$ and a_{n+1} is the smallest positive integer m such that m hasn't yet occurred in the sequence and also $\operatorname{gcd}\left(m, a_{n}\right) \neq 1$. Show that all positive integers occur in the sequence.

