

AoPS Community

www.artofproblemsolving.com/community/c1199471 by Kamran011

1 Let *F* be the set of all $n - tuples(A_1, A_2, A_n)$ such that each A_i is a subset of 1, 2, 2019. Let |A| denote the number of elements of the set *A*. Find

 $\sum_{(A_1,A_n)\in F} |A_1\cup A_2\cup \ldots \cup A_n|$

 $\begin{array}{ll} \textbf{2} & \mbox{Consider two circles k_1, k_2 touching at point T.} \\ & \mbox{A line touches k_2 at point X and intersects k_1 at points A, B where B lies between A and X.Let S be the second intersection point of k_1 with XT. On the arc TS not containing A and B, a point C is choosen.} \\ & \mbox{Let CY be the tangent line to k_2 with $Y \in k_2$, such that the segment CY doesn't intersect the segment ST. If $I = XY \cap SC$, prove that : } \end{array}$

(a) the points C, T, Y, I are concyclic. (b) I is the A - excenter of $\triangle ABC$

- **3** Find all functions $u : R \to R$ for which there exists a strictly monotonic function $f : R \to R$ such that f(x + y) = f(x)u(y) + f(y)for all $x, y \in \mathbb{R}$
- 4 Consider an odd prime number p and p consecutive positive integers m_1, m_2, m_p . Choose a permutation σ of 1, 2, p. Show that there exist two different numbers $k, l \in (1, 2, p)$ such that $p \mid m_k.m_{\sigma(k)} - m_l.m_{\sigma(l)}$
- 5 Let x, y, z be positive real numbers such that $x^4 + y^4 + z^4 = 1$. Determine with proof the minimum value of $\frac{x^3}{1-x^8} + \frac{y^3}{1-y^8} + \frac{z^3}{1-z^8}$
- **6** Define a sequence $a_{nn\geq 1}$ such that $a_1 = 1$, $a_2 = 2$ and a_{n+1} is the smallest positive integer m such that m hasn't yet occurred in the sequence and also $gcd(m, a_n) \neq 1$. Show that all positive integers occur in the sequence.

🟟 AoPS Online 🔯 AoPS Academy 🐲 AoPS 🗱

© 2020 AoPS Incorporated 1

Art of Problem Solving is an ACS WASC Accredited School.