AoPS Community

Belarus Team Selection Test 2009

www.artofproblemsolving.com/community/c1201451
by parmenides51, April, Bugi, bah_luckyboy

- \quad Test 1

1 Two equal circles S_{1} and S_{2} meet at two different points. The line ℓ intersects S_{1} at points A, C and S_{2} at points B, D respectively (the order on $\ell: A, B, C, D$). Define circles Γ_{1} and Γ_{2} as follows: both Γ_{1} and Γ_{2} touch S_{1} internally and S_{2} externally, both Γ_{1} and Γ_{2} line ℓ, Γ_{1} and Γ_{2} lie in the different halfplanes relatively to line ℓ. Suppose that Γ_{1} and Γ_{2} touch each other. Prove that $A B=C D$.

I. Voronovich

2 Find all $n \in N$ for which the value of the expression $x^{n}+y^{n}+z^{n}$ is constant for all $x, y, z \in R$ such that $x+y+z=0$ and $x y z=1$.
D. Bazylev

3 Points T, P, H lie on the side $B C, A C, A B$ respectively of triangle $A B C$, so that $B P$ and $A T$ are angle bisectors and $C H$ is an altitude of $A B C$. Given that the midpoint of $C H$ belongs to the segment $P T$, find the value of $\cos A+\cos B$

I. Voronovich

4 Let x, y, z be integer numbers satisfying the equality $y x^{2}+\left(y^{2}-z^{2}\right) x+y(y-z)^{2}=0$
a) Prove that number $x y$ is a perfect square.
b) Prove that there are infinitely many triples (x, y, z) satisfying the equality.

I.Voronovich

- \quad Test 2

1 Prove that any positive real numbers a,b,c satisfy the inequlaity

$$
\frac{1}{(a+b) b}+\frac{1}{(b+c) c}+\frac{1}{(c+a) a} \geq \frac{9}{2(a b+b c+c a)}
$$

I.Voronovich

2 a) Prove that there is not an infinte sequence $\left(x_{n}\right), n=1,2, \ldots$ of positive real numbers satisfying the relation $x_{n+2}=\sqrt{x_{n+1}}-\sqrt{x_{n}}, \forall n \in N$ (*)
b) Do there exist sequences satisfying (*) and containing arbitrary many terms?
I.Voronovich

AoPS Community

2009 Belarus Team Selection Test

3 Given trapezoid $A B C D(A D \| B C)$ with $A D \perp A B$ and $T=A C \cap B D$. A circle centered at point O is inscribed in the trapezoid and touches the side $C D$ at point Q. Let P be the intersection point (different from Q) of the side $C D$ and the circle passing through T, Q and O. Prove that $T P \| A D$.

I. Voronovich

4 Given a graph with $n(n \geq 4)$ vertices. It is known that for any two vertices A and B there exists a vertex which is connected by edges both with A and B. Find the smallest possible numbers of edges in the graph.
E. Barabanov

- \quad Test 3
$1 \quad$ Find all functions $f: R \rightarrow R$ and $g: R \rightarrow R$ such that $f(x-f(y))=x f(y)-y f(x)+g(x)$ for all real numbers x, y.
I.Voronovich

2 Let $A B C D$ be a convex quadrilateral and let P and Q be points in $A B C D$ such that $P Q D A$ and $Q P B C$ are cyclic quadrilaterals. Suppose that there exists a point E on the line segment $P Q$ such that $\angle P A E=\angle Q D E$ and $\angle P B E=\angle Q C E$. Show that the quadrilateral $A B C D$ is cyclic.

Proposed by John Cuya, Peru
3 Let n be a positive integer and let p be a prime number. Prove that if a, b, c are integers (not necessarily positive) satisfying the equations

$$
a^{n}+p b=b^{n}+p c=c^{n}+p a
$$

then $a=b=c$.
Proposed by Angelo Di Pasquale, Australia

- \quad Test 4

1 Prove that there exist many natural numbers n so that both roots of the quadratic equation $x^{2}+\left(2-3 n^{2}\right) x+\left(n^{2}-1\right)^{2}=0$ are perfect squares.
S. Kuzmich

2 In an acute triangle $A B C$ segments $B E$ and $C F$ are altitudes. Two circles passing through the point A and F and tangent to the line $B C$ at the points P and Q so that B lies between C and Q. Prove that lines $P E$ and $Q F$ intersect on the circumcircle of triangle $A E F$.
Proposed by Davood Vakili, Iran

AoPS Community

2009 Belarus Team Selection Test

3 Let $n \in \mathbb{N}$ and A_{n} set of all permutations $\left(a_{1}, \ldots, a_{n}\right)$ of the set $\{1,2, \ldots, n\}$ for which

$$
k \mid 2\left(a_{1}+\cdots+a_{k}\right), \text { for all } 1 \leq k \leq n .
$$

Find the number of elements of the set A_{n}.
Proposed by Vidan Govedarica, Serbia

- \quad Test 5

1 Let M, N be the midpoints of the sides $A D, B C$ respectively of the convex quadrilateral $A B C D$, $K=A N \cap B M, L=C M \cap D N$. Find the smallest possible $c \in R$ such that $S(M K N L)<$ $c \cdot S(A B C D)$ for any convex quadrilateral $A B C D$.

I. Voronovich

2 Let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct positive integers, $n \geq 3$. Prove that there exist distinct indices i and j such that $a_{i}+a_{j}$ does not divide any of the numbers $3 a_{1}, 3 a_{2}, \ldots, 3 a_{n}$.

Proposed by Mohsen Jamaali, Iran
3 Find all real numbers a for which there exists a function $f: R \rightarrow R$ asuch that $x+f(y)=$ $a(y+f(x))$ for all real numbers $x, y \in R$.
I.Voronovich

- \quad Test 6

1 In a triangle $A B C, A M$ is a median, $B K$ is a bisectrix, $L=A M \cap B K$. It is known that $B C=$ $a, A B=c, a>c$.
Given that the circumcenter of triangle $A B C$ lies on the line $C L$, find $A C$

I. Voronovich

2 In the coordinate plane consider the set S of all points with integer coordinates. For a positive integer k, two distinct points $A, B \in S$ will be called k-friends if there is a point $C \in S$ such that the area of the triangle $A B C$ is equal to k. A set $T \subset S$ will be called k-clique if every two points in T are k-friends. Find the least positive integer k for which there exits a k-clique with more than 200 elements.

Proposed by Jorge Tipe, Peru
3 Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of positive integers such that the greatest common divisor of any two consecutive terms is greater than the preceding term; in symbols, $\operatorname{gcd}\left(a_{i}, a_{i+1}\right)>a_{i-1}$. Prove that $a_{n} \geq 2^{n}$ for all $n \geq 0$.

Proposed by Morteza Saghafian, Iran

AoPS Community

2009 Belarus Team Selection Test

- \quad Test 7

1 Denote by $\phi(n)$ for all $n \in \mathbb{N}$ the number of positive integer smaller than n and relatively prime to n. Also, denote by $\omega(n)$ for all $n \in \mathbb{N}$ the number of prime divisors of n. Given that $\phi(n) \mid n-1$ and $\omega(n) \leq 3$. Prove that n is a prime number.

2 Given trapezoid $A B C D$ with parallel sides $A B$ and $C D$, assume that there exist points E on line $B C$ outside segment $B C$, and F inside segment $A D$ such that $\angle D A E=\angle C B F$. Denote by I the point of intersection of $C D$ and $E F$, and by J the point of intersection of $A B$ and $E F$. Let K be the midpoint of segment $E F$, assume it does not lie on line $A B$. Prove that I belongs to the circumcircle of $A B K$ if and only if K belongs to the circumcircle of $C D J$.

Proposed by Charles Leytem, Luxembourg
3 Let $S=\left\{x_{1}, x_{2}, \ldots, x_{k+l}\right\}$ be a $(k+l)$-element set of real numbers contained in the interval $[0,1]$; k and l are positive integers. A k-element subset $A \subset S$ is called nice if

$$
\left|\frac{1}{k} \sum_{x_{i} \in A} x_{i}-\frac{1}{l} \sum_{x_{j} \in S \backslash A} x_{j}\right| \leq \frac{k+l}{2 k l}
$$

Prove that the number of nice subsets is at least $\frac{2}{k+l}\binom{k+l}{k}$.
Proposed by Andrey Badzyan, Russia

- \quad Test 8

1 On R a binary algebraic operation " \star " is defined which satisfies the following two conditions:
i) for all $a, b \in R$, there exists a unique $x \in R$ such that $x * a=b$ (write $x=b / a$)
ii) $(a * b) * c=(a * c) *(b * c)$ for all $a, b, c \in R$
a) Is this operation necesarily commutative (i.e. $a * b=b * a$ for all $a, b \in R$)?
b) Prove that $(a / b) / c=(a / c) /(b / c)$ and $(a / b) * c=(a * c) /(b * c)$ for all $a, b, c \in R$.
A. Mirotin

2 Does there exist a convex pentagon $A_{1} A_{2} A_{3} A_{4} A_{5}$ and a point X inside it such that $X A_{i}=$ $A_{i+2} A_{i+3}$ for all $i=1, \ldots, 5$ (all indices are considered modulo 5) ?

I. Voronovich

3 a) Does there exist a function $f: N \rightarrow N$ such that $f(f(n))=f(n+1)-f(n)$ for all $n \in N$?
b) Does there exist a function $f: N \rightarrow N$ such that $f(f(n))=f(n+2)-f(n)$ for all $n \in N$?
I. Voronovich

