

2009 Belarus Team Selection Test

Belarus Team Selection Test 2009

www.artofproblemsolving.com/community/c1201451 by parmenides51, April, Bugi, bah_luckyboy

-	Test 1
1	Two equal circles S_1 and S_2 meet at two different points. The line ℓ intersects S_1 at points A, C and S_2 at points B, D respectively (the order on ℓ : A, B, C, D). Define circles Γ_1 and Γ_2 as follows: both Γ_1 and Γ_2 touch S_1 internally and S_2 externally, both Γ_1 and Γ_2 line ℓ , Γ_1 and Γ_2 lie in the different halfplanes relatively to line ℓ . Suppose that Γ_1 and Γ_2 touch each other. Prove that $AB = CD$.
	I. Voronovich
2	Find all $n \in N$ for which the value of the expression $x^n + y^n + z^n$ is constant for all $x, y, z \in R$ such that $x + y + z = 0$ and $xyz = 1$.
	D. Bazylev
3	Points T, P, H lie on the side BC, AC, AB respectively of triangle ABC , so that BP and AT are angle bisectors and CH is an altitude of ABC . Given that the midpoint of CH belongs to the segment PT , find the value of $\cos A + \cos B$
	I. Voronovich
4	Let x, y, z be integer numbers satisfying the equality $yx^2 + (y^2 - z^2)x + y(y - z)^2 = 0$ a) Prove that number xy is a perfect square. b) Prove that there are infinitely many triples (x, y, z) satisfying the equality.
	I.Voronovich
-	Test 2
1	Prove that any positive real numbers a,b,c satisfy the inequlaity
	$\frac{1}{(a+b)b} + \frac{1}{(b+c)c} + \frac{1}{(c+a)a} \ge \frac{9}{2(ab+bc+ca)}$
	I.Voronovich
2	a) Prove that there is not an infinte sequence (x_n) , $n = 1, 2,$ of positive real numbers satisfying the relation $x_{n+2} = \sqrt{x_{n+1}} - \sqrt{x_n}$, $\forall n \in N$ (*) b) Do there exist sequences satisfying (*) and containing arbitrary many terms?
	I.Voronovich

2009 Belarus Team Selection Test

3 Given trapezoid $ABCD(AD \parallel BC)$ with $AD \perp AB$ and $T = AC \cap BD$. A circle centered at point O is inscribed in the trapezoid and touches the side CD at point Q. Let P be the intersection point (different from Q) of the side CD and the circle passing through T, Q and O. Prove that $TP \parallel AD$.

I. Voronovich

4 Given a graph with $n (n \ge 4)$ vertices. It is known that for any two vertices A and B there exists a vertex which is connected by edges both with A and B. Find the smallest possible numbers of edges in the graph.

E. Barabanov

- Test 3
- **1** Find all functions $f : R \to R$ and $g : R \to R$ such that f(x f(y)) = xf(y) yf(x) + g(x) for all real numbers x, y.

I.Voronovich

2 Let *ABCD* be a convex quadrilateral and let *P* and *Q* be points in *ABCD* such that *PQDA* and *QPBC* are cyclic quadrilaterals. Suppose that there exists a point *E* on the line segment *PQ* such that $\angle PAE = \angle QDE$ and $\angle PBE = \angle QCE$. Show that the quadrilateral *ABCD* is cyclic.

Proposed by John Cuya, Peru

3 Let *n* be a positive integer and let *p* be a prime number. Prove that if *a*, *b*, *c* are integers (not necessarily positive) satisfying the equations

$$a^n + pb = b^n + pc = c^n + pa$$

then a = b = c.

Proposed by Angelo Di Pasquale, Australia

-	Test 4
1	Prove that there exist many natural numbers n so that both roots of the quadratic equation $x^2 + (2 - 3n^2)x + (n^2 - 1)^2 = 0$ are perfect squares.
	S. Kuzmich
2	In an acute triangle ABC segments BE and CF are altitudes. Two circles passing through the point A and F and tangent to the line BC at the points P and Q so that B lies between C and Q . Prove that lines PE and QF intersect on the circumcircle of triangle AEF .
	Proposed by Davood Vakili, Iran

2009 Belarus Team Selection Test

3	Let $n \in \mathbb{N}$ and A_n set of all permutations (a_1, \ldots, a_n) of the set $\{1, 2, \ldots, n\}$ for which
	$k 2(a_1 + \dots + a_k), \text{ for all } 1 \le k \le n.$
	Find the number of elements of the set A_n .
	Proposed by Vidan Govedarica, Serbia
-	Test 5
1	Let M, N be the midpoints of the sides AD, BC respectively of the convex quadrilateral $ABCD$, $K = AN \cap BM$, $L = CM \cap DN$. Find the smallest possible $c \in R$ such that $S(MKNL) < c \cdot S(ABCD)$ for any convex quadrilateral $ABCD$.
	I. Voronovich
2	Let a_1, a_2, \ldots, a_n be distinct positive integers, $n \ge 3$. Prove that there exist distinct indices i and j such that $a_i + a_j$ does not divide any of the numbers $3a_1, 3a_2, \ldots, 3a_n$.
	Proposed by Mohsen Jamaali, Iran
3	Find all real numbers a for which there exists a function $f : R \to R$ asuch that $x + f(y) = a(y + f(x))$ for all real numbers $x, y \in R$.
	I.Voronovich
-	Test 6
1	In a triangle ABC , AM is a median, BK is a bisectrix, $L = AM \cap BK$. It is known that $BC = a$, $AB = c$, $a > c$. Given that the circumcenter of triangle ABC lies on the line CL , find AC
	I. Voronovich
2	In the coordinate plane consider the set S of all points with integer coordinates. For a positive integer k , two distinct points $A, B \in S$ will be called k -friends if there is a point $C \in S$ such that the area of the triangle ABC is equal to k . A set $T \subset S$ will be called k -clique if every two points in T are k -friends. Find the least positive integer k for which there exits a k -clique with more than 200 elements.
	Proposed by Jorge Tipe, Peru
3	Let a_0, a_1, a_2 be a sequence of positive integers such that the greatest common divisor of

Let $a_0, a_1, a_2, ...$ be a sequence of positive integers such that the greatest common divisor of any two consecutive terms is greater than the preceding term; in symbols, $gcd(a_i, a_{i+1}) > a_{i-1}$. Prove that $a_n \ge 2^n$ for all $n \ge 0$.

Proposed by Morteza Saghafian, Iran

2009 Belarus Team Selection Test

-	Test 7
1	Denote by $\phi(n)$ for all $n \in \mathbb{N}$ the number of positive integer smaller than n and relatively prime to n . Also, denote by $\omega(n)$ for all $n \in \mathbb{N}$ the number of prime divisors of n . Given that $\phi(n) n-1$ and $\omega(n) \leq 3$. Prove that n is a prime number.
2	Given trapezoid $ABCD$ with parallel sides AB and CD , assume that there exist points E on line BC outside segment BC , and F inside segment AD such that $\angle DAE = \angle CBF$. Denote by I the point of intersection of CD and EF , and by J the point of intersection of AB and EF . Let K be the midpoint of segment EF , assume it does not lie on line AB . Prove that I belongs to the circumcircle of ABK if and only if K belongs to the circumcircle of CDJ .

Proposed by Charles Leytem, Luxembourg

3 Let $S = \{x_1, x_2, \dots, x_{k+l}\}$ be a (k+l)-element set of real numbers contained in the interval [0, 1]; k and l are positive integers. A k-element subset $A \subset S$ is called *nice* if

$$\left|\frac{1}{k}\sum_{x_i\in A} x_i - \frac{1}{l}\sum_{x_j\in S\backslash A} x_j\right| \leq \frac{k+l}{2kl}$$

Prove that the number of nice subsets is at least $\frac{2}{k+l}\binom{k+l}{k}$.

Proposed by Andrey Badzyan, Russia

-	Test 8
1	On R a binary algebraic operation "*" is defined which satisfies the following two conditions: i) for all $a, b \in R$, there exists a unique $x \in R$ such that $x * a = b$ (write $x = b/a$) ii) $(a * b) * c = (a * c) * (b * c)$ for all $a, b, c \in R$ a) Is this operation necessarily commutative (i.e. $a * b = b * a$ for all $a, b \in R$)? b) Prove that $(a/b)/c = (a/c)/(b/c)$ and $(a/b) * c = (a * c)/(b * c)$ for all $a, b, c \in R$.
	A. Mirotin
2	Does there exist a convex pentagon $A_1A_2A_3A_4A_5$ and a point X inside it such that $XA_i = A_{i+2}A_{i+3}$ for all $i = 1,, 5$ (all indices are considered modulo 5)?
	I. Voronovich
3	a) Does there exist a function $f : N \to N$ such that $f(f(n)) = f(n+1) - f(n)$ for all $n \in N$? b) Does there exist a function $f : N \to N$ such that $f(f(n)) = f(n+2) - f(n)$ for all $n \in N$?
	I. Voronovich

🐼 AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.

© 2023 AoPS Incorporated 4