Art of Problem Solving

AoPS Community

Belarus Team Selection Test 2011

www.artofproblemsolving.com/community/c1201452
by parmenides51, orl, Amir Hossein

- \quad Test 1

1 Find all real a such that there exists a function $f: R \rightarrow R$ satisfying the equation $f(\sin x)+$ $a f(\cos x)=\cos 2 x$ for all real x.
I.Voronovich

2 Points L and H are marked on the sides $A B$ of an acute-angled triangle ABC so that $C L$ is a bisector and $C H$ is an altitude. Let P, Q be the feet of the perpendiculars from L to $A C$ and $B C$ respectively. Prove that $A P \cdot B H=B Q \cdot A H$.

I. Gorodnin

3 Any natural number $n, n \geq 3$ can be presented in different ways as a sum several summands (not necessarily different). Find the greatest possible value of these summands.

Folklore
$4 \quad$ Given a $n \times n$ square table. Exactly one beetle sits in each cell of the table. At 12.00 all beetles creeps to some neighbouring cell (two cells are neighbouring if they have the common side). Find the greatest number of cells which can become empty (i.e. without beetles) if
a) $n=8$
b) $n=9$

Problem Committee of BMO 2011

- \quad Test 2

1 Is it possible to arrange the numbers $1,2, \ldots, 2011$ over the circle in some order so that among any 25 successive numbers at least 8 numbers are multiplies of 5 or 7 (or both 5 and 7) ?
I. Gorodnin

2 Two different points X, Y are marked on the side $A B$ of a triangle $A B C$ so that $\frac{A X \cdot B X}{C X^{2}}=\frac{A Y \cdot B Y}{C Y^{2}}$. Prove that $\angle A C X=\angle B C Y$.

I.Zhuk

3 Find all functions $f: R \rightarrow R, g: R \rightarrow R$ satisfying the following equality $f(f(x+y))=$ $x f(y)+g(x)$ for all real x and y.
I. Gorodnin

4 Given nonzero real numbers a,b,c with $a+b+c=a^{2}+b^{2}+c^{2}=a^{3}+b^{3}+c^{3} .(*)$
a) Find $\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)(a+b+c-2)$
b) Do there exist pairwise different nonzero a, b, c satisfying (*)?
D. Bazylev

- \quad Test 3

1 Given natural number $a>1$ and different odd prime numbers $p_{1}, p_{2}, \ldots, p_{n}$ with $a^{p_{1}} \equiv 1(\bmod$ $\left.p_{2}\right), a^{p_{2}} \equiv 1\left(\bmod p_{3}\right), \ldots, a^{p_{n}} \equiv 1\left(\bmod p_{1}\right)$.
Prove that
a) $(a-1) \vdots p_{i}$ for some $i=1, . ., n$
b) Can $(a-1)$ be divisible by p_{i} for exactly one i of $i=1, \ldots, n$?

I. Bliznets

2 The external angle bisector of the angle A of an acute-angled triangle $A B C$ meets the circumcircle of $\triangle A B C$ at point T. The perpendicular from the orthocenter H of $\triangle A B C$ to the line $T A$ meets the line $B C$ at point P. The line $T P$ meets the circumcircce of $\triangle A B C$ at point D. Prove that $A B^{2}+D C^{2}=A C^{2}+B D^{2}$
A. Voidelevich

3 In a concert, 20 singers will perform. For each singer, there is a (possibly empty) set of other singers such that he wishes to perform later than all the singers from that set. Can it happen that there are exactly 2010 orders of the singers such that all their wishes are satisfied?

Proposed by Gerhard Wginger, Austria

- \quad Test 4

1 Let A be the sum of all 10 distinct products of the sides of a convex pentagon, S be the area of the pentagon.
a) Prove thas $S \leq \frac{1}{5} A$.
b) Does there exist a constant $c<\frac{1}{5}$ such that $S \leq c A$?

I.Voronovich

2 Find the least positive integer n for which there exists a set $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ consisting of n distinct positive integers such that

$$
\left(1-\frac{1}{s_{1}}\right)\left(1-\frac{1}{s_{2}}\right) \cdots\left(1-\frac{1}{s_{n}}\right)=\frac{51}{2010} .
$$

Proposed by Daniel Brown, Canada

3 Let a, b be integers, and let $P(x)=a x^{3}+b x$. For any positive integer n we say that the pair (a, b) is n-good if $n \mid P(m)-P(k)$ implies $n \mid m-k$ for all integers m, k. We say that (a, b) is very good if (a, b) is n-good for infinitely many positive integers n.
-(a) Find a pair (a, b) which is 51-good, but not very good.
-(b) Show that all 2010-good pairs are very good.
Proposed by Okan Tekman, Turkey

- \quad Test 5

1 Let $g(n)$ be the number of all n-digit natural numbers each consisting only of digits $0,1,2,3$ (but not nessesarily all of them) such that the sum of no two neighbouring digits equals 2 . Determine whether $g(2010)$ and $g(2011)$ are divisible by 11.

I.Kozlov

2 Positive real a, b, c satisfy the condition

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1+\frac{1}{6}\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)
$$

Prove that

$$
\frac{a^{3} b c}{b+c}+\frac{b^{3} c a}{a+c}+\frac{c^{3} a b}{a+b} \geq \frac{1}{6}(a b+b c+c a)^{2}
$$

I.Voronovich

3 Let $A B C$ be an acute triangle with D, E, F the feet of the altitudes lying on $B C, C A, A B$ respectively. One of the intersection points of the line $E F$ and the circumcircle is P. The lines $B P$ and $D F$ meet at point Q. Prove that $A P=A Q$.
Proposed by Christopher Bradley, United Kingdom

- \quad Test 6
$1 \quad A B$ and $C D$ are two parallel chords of a parabola. Circle S_{1} passing through points A, B intersects circle S_{2} passing through C, D at points E, F. Prove that if E belongs to the parabola, then F also belongs to the parabola.
I.Voronovich

2 Do they exist natural numbers m, x, y such that

$$
m^{2}+25:\left(2011^{x}-1007^{y}\right) ?
$$

S. Finskii

32500 chess kings have to be placed on a 100×100 chessboard so that
(i) no king can capture any other one (i.e. no two kings are placed in two squares sharing a common vertex);
(ii) each row and each column contains exactly 25 kings.

Find the number of such arrangements. (Two arrangements differing by rotation or symmetry are supposed to be different.)
Proposed by Sergei Berlov, Russia

- \quad Test 7

1 In an acute-angled triangle $A B C$, the orthocenter is H. I_{H} is the incenter of $\triangle B H C$. The bisector of $\angle B A C$ intersects the perpendicular from I_{H} to the side $B C$ at point K. Let F be the foot of the perpendicular from K to $A B$. Prove that $2 K F+B C=B H+H C$

A. Voidelevich

2 Find all pairs (m, n) of nonnegative integers for which

$$
m^{2}+2 \cdot 3^{n}=m\left(2^{n+1}-1\right) .
$$

Proposed by Angelo Di Pasquale, Australia
$3 \quad$ Find all functions $f: R \rightarrow R$ such that for all real x, y with $y \neq 0$

$$
f(x-f(x / y))=x f(1-f(1 / y))
$$

and
a) $f(1-f(1)) \neq 0$
b) $f(1-f(1))=0$
S. Kuzmich, I.Voronovich

- \quad Test 8

1 Find the least possible number of elements which can be deleted from the set $\{1,2, \ldots, 20\}$ so that the sum of no two different remaining numbers is not a perfect square.

N. Sedrakian , I.Voronovich

2 Let $A_{1} A_{2} \ldots A_{n}$ be a convex polygon. Point P inside this polygon is chosen so that its projections P_{1}, \ldots, P_{n} onto lines $A_{1} A_{2}, \ldots, A_{n} A_{1}$ respectively lie on the sides of the polygon. Prove that for points X_{1}, \ldots, X_{n} on sides $A_{1} A_{2}, \ldots, A_{n} A_{1}$ respectively,

$$
\max \left\{\frac{X_{1} X_{2}}{P_{1} P_{2}}, \ldots, \frac{X_{n} X_{1}}{P_{n} P_{1}}\right\} \geq 1
$$

if
a) X_{1}, \ldots, X_{n} are the midpoints of the corressponding sides,
b) X_{1}, \ldots, X_{n} are the feet of the corressponding altitudes,
c) X_{1}, \ldots, X_{n} are arbitrary points on the corressponding lines.

Modified version of IMO 2010 SL G3 (https: //artof problemsolving .com/community/c6h418634p236197 (it was question c)

3 Let x_{1}, \ldots, x_{100} be nonnegative real numbers such that $x_{i}+x_{i+1}+x_{i+2} \leq 1$ for all $i=1, \ldots, 100$ (we put $x_{101}=x_{1}, x_{102}=x_{2}$). Find the maximal possible value of the sum $S=\sum_{i=1}^{100} x_{i} x_{i+2}$.

Proposed by Sergei Berlov, Ilya Bogdanov, Russia

