

2015 Belarus Team Selection Test

Belarus Team Selection Test 2015

www.artofproblemsolving.com/community/c1201453 by parmenides51, hajimbrak, Shu

-	Test 1
1	Solve the equation in nonnegative integers a, b, c :
	$3^a + 2^b + 2015 = 3c!$
	I.Gorodnin
2	All the numbers $1, 2,, 9$ are written in the cells of a 3×3 table (exactly one number in a cell). Per move it is allowed to choose an arbitrary 2×2 square of the table and either decrease by 1 or increase by 1 all four numbers of the square. After some number of such moves all numbers of the table become equal to some number a . Find all possible values of a . I.Voronovich
3	The incircle of the triangle ABC touches the sides AC and BC at points P and Q respectively. N and M are the midpoints of AC and BC respectively. Let $X = AM \cap BP, Y = BN \cap AQ$. Given C, X, Y are collinear, prove that CX is the angle bisector of the angle ACB . I. Gorodnin
4	Prove that $(a + b + c)^5 \ge 81(a^2 + b^2 + c^2)abc$ for any positive real numbers a, b, c
	I.Gorodnin
-	Test 2
1	N numbers are marked in the set $\{1, 2,, 2000\}$ so that any pair of the numbers $(1, 2), (2, 4),, (1000, 2000)$ contains at least one marked number. Find the least possible value of N . I.Gorodnin
2	In the sequence of digits $2, 0, 2, 9, 3,$ any digit it equal to the last digit in the decimal representation of the sum of four previous digits. Do the four numbers $2, 0, 1, 5$ in that order occur in the sequence?
	Folklore
3	Let the incircle of the triangle ABC touch the side AB at point Q . The incircles of the triangles QAC and QBC touch AQ , AC and BQ , BC at points P,T and D,F respectively. Prove that $PDFT$ is a cyclic quadrilateral.

2015 Belarus Team Selection Test

	I.Gorodnin
4	Find all pairs of polynomials $p(x), q(x) \in R[x]$ satisfying the equality $p(x^2) = p(x)q(1-x) + p(1-x)q(x)$ for all real x .
	I.Voronovich
-	Test 3
1	Do there exist numbers $a, b \in R$ and surjective function $f : R \to R$ such that $f(f(x)) = bxf(x) + a$ for all real x ?
	I.Voronovich
2	The medians AM and BN of a triangle ABC are the diameters of the circles ω_1 and ω_2 . If ω_1 touches the altitude CH , prove that ω_2 also touches CH .
	I. Gorodnin
3	Let <i>n</i> points be given inside a rectangle <i>R</i> such that no two of them lie on a line parallel to one of the sides of <i>R</i> . The rectangle <i>R</i> is to be dissected into smaller rectangles with sides parallel to the sides of <i>R</i> in such a way that none of these rectangles contains any of the given points in its interior. Prove that we have to dissect <i>R</i> into at least $n + 1$ smaller rectangles.
	Proposed by Serbia
-	Test 4
1	A circle intersects a parabola at four distinct points. Let M and N be the midpoints of the arcs of the circle which are outside the parabola. Prove that the line MN is perpendicular to the axis of the parabola.
	I. Voronovich
2	Determine all pairs (x, y) of positive integers such that
	$\sqrt[3]{7x^2 - 13xy + 7y^2} = x - y + 1.$
	Proposed by Titu Andreescu, USA
3	Construct a tetromino by attaching two 2×1 dominoes along their longer sides such that the midpoint of the longer side of one domino is a corner of the other domino. This construction yields two kinds of tetrominoes with opposite orientations. Let us call them <i>S</i> - and <i>Z</i> -tetrominoes, respectively.

Assume that a lattice polygon P can be tiled with S-tetrominoes. Prove that no matter how we tile P using only S- and Z-tetrominoes, we always use an even number of Z-tetrominoes.

Proposed by Tamas Fleiner and Peter Pal Pach, Hungary

2015 Belarus Team Selection Test

-	Test 5
1	Find all positive integers n such that $n = q(q^2 - q - 1) = r(2r + 1)$ for some primes q and r .
	B.Gilevich
2	Let ABC be a triangle. The points K, L , and M lie on the segments BC, CA , and AB , respectively, such that the lines AK, BL , and CM intersect in a common point. Prove that it is possible to choose two of the triangles ALM, BMK , and CKL whose inradii sum up to at least the inradius of the triangle ABC .
	Proposed by Estonia
3	Consider all polynomials $P(x)$ with real coefficients that have the following property: for any two real numbers x and y one has
	$ y^2 - P(x) \le 2 x $ if and only if $ x^2 - P(y) \le 2 y $.
	Determine all possible values of $P(0)$.
	Proposed by Belgium
_	Test 6
1	Let $n \geq 2$ be an integer, and let A_n be the set
	$A_n = \{2^n - 2^k \mid k \in \mathbb{Z}, \ 0 \le k < n\}.$
	Determine the largest positive integer that cannot be written as the sum of one or more (not necessarily distinct) elements of A_n .
	Proposed by Serbia
2	Define the function $f:(0,1) \rightarrow (0,1)$ by
	$f(x) = \begin{cases} x + \frac{1}{2} & \text{if } x < \frac{1}{2} \\ x^2 & \text{if } x \ge \frac{1}{2} \end{cases}$
	Let <i>a</i> and <i>b</i> be two real numbers such that $0 < a < b < 1$. We define the sequences a_n and b_n by $a_0 = a, b_0 = b$, and $a_n = f(a_{n-1})$, $b_n = f(b_{n-1})$ for $n > 0$. Show that there exists a positive integer <i>n</i> such that

 $(a_n - a_{n-1})(b_n - b_{n-1}) < 0.$

Proposed by Denmark

2015 Belarus Team Selection Test

3 Consider a fixed circle Γ with three fixed points A, B, and C on it. Also, let us fix a real number $\lambda \in (0,1)$. For a variable point $P \notin \{A, B, C\}$ on Γ , let M be the point on the segment CP such that $CM = \lambda \cdot CP$. Let Q be the second point of intersection of the circumcircles of the triangles AMP and BMC. Prove that as P varies, the point Q lies on a fixed circle.

Proposed by Jack Edward Smith, UK

Test 7

1 We have 2^m sheets of paper, with the number 1 written on each of them. We perform the following operation. In every step we choose two distinct sheets; if the numbers on the two sheets are *a* and *b*, then we erase these numbers and write the number a + b on both sheets. Prove that after $m2^{m-1}$ steps, the sum of the numbers on all the sheets is at least 4^m .

Proposed by Abbas Mehrabian, Iran

2 Given a cyclic ABCD with AB = AD. Points M and N are marked on the sides CD and BC, respectively, so that DM + BN = MN. Prove that the circumcenter of the triangle AMN belongs to the segment AC.

N.Sedrakian

1, 2, ..., n.

3 Let n > 1 be a given integer. Prove that infinitely many terms of the sequence $(a_k)_{k \ge 1}$, defined by

$$a_k = \left\lfloor \frac{n^k}{k} \right\rfloor$$

are odd. (For a real number x, $\lfloor x \rfloor$ denotes the largest integer not exceeding x.)

Proposed by Hong Kong

-	Test 8
1	Given $m, n \in N$ such that $M > n^{n-1}$ and the numbers $m + 1, m + 2,, m + n$ are composite.
	Prove that exist distinct primes $p_1, p_2,, p_n$ such that $M + k$ is divisible by p_k for any $k =$

Tuymaada Olympiad 2004, C.A.Grimm. USA

- 2 In a cyclic quadrilateral *ABCD*, the extensions of sides *AB* and *CD* meet at point *P*, and the extensions of sides *AD* and *BC* meet at point *Q*. Prove that the distance between the orthocenters of triangles *APD* and *AQB* is equal to the distance between the orthocenters of triangles *CQD* and *BPC*.
- **3** Determine all functions $f : \mathbb{Z} \to \mathbb{Z}$ satisfying

f(f(m) + n) + f(m) = f(n) + f(3m) + 2014

2015 Belarus Team Selection Test

for all integers m and n.

Proposed by Netherlands

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬