Art of Problem Solving

AoPS Community

Belarus Team Selection Test 2016

www.artofproblemsolving.com/community/c1201455
by parmenides51, RagvaloD, WakeUp, Problem_Penetrator, ABCDE, va2010

- \quad Test 1

1 Prove for positive a, b, c that

$$
\left(a^{2}+\frac{b^{2}}{c^{2}}\right)\left(b^{2}+\frac{c^{2}}{a^{2}}\right)\left(c^{2}+\frac{a^{2}}{b^{2}}\right) \geq a b c\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)\left(c+\frac{1}{c}\right)
$$

2 Let A, B, C denote intersection points of diagonals $A_{1} A_{4}$ and $A_{2} A_{5}, A_{1} A_{6}$ and $A_{2} A_{7}, A_{1} A_{9}$ and $A_{2} A_{10}$ of the regular decagon $A_{1} A_{2} \ldots A_{10}$ respectively Find the angles of the triangle $A B C$

3 Solve the equation $p^{3}-q^{3}=p q^{3}-1$ in primes p, q.
4 There is a graph with 30 vertices. If any of 26 of its vertices with their outgoiing edges are deleted, then the remained graph is a connected graph with 4 vertices.
What is the smallest number of the edges in the initial graph with 30 vertices?

- \quad Test 2

1 Let a, b, c, d, x, y denote the lengths of the sides $A B, B C, C D, D A$ and the diagonals $A C, B D$ of a cyclic quadrilateral $A B C D$ respectively.
Prove that

$$
\left(\frac{1}{a}+\frac{1}{c}\right)^{2}+\left(\frac{1}{b}+\frac{1}{d}\right)^{2} \geq 8\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}\right)
$$

2 Find all real numbers a such that exists function $\mathbb{R} \rightarrow \mathbb{R}$ satisfying the following conditions:

1) $f(f(x))=x f(x)-a x$ for all real x
2) f is not constant
3) f takes the value a

3 Point A, B are marked on the right branch of the hyperbola $y=\frac{1}{x}, x>0$. The straight line l passing through the origin O is perpendicular to $A B$ and meets $A B$ and given branch of the hyperbola at points D and C respectively. The circle through A, B, C meets l at F.
Find $O D: C F$

AoPS Community

4 On a circle there are $2 n+1$ points, dividing it into equal arcs ($n \geq 2$). Two players take turns to erase one point. If after one player's turn, it turned out that all the triangles formed by the remaining points on the circle were obtuse, then the player wins and the game ends.
Who has a winning strategy: the starting player or his opponent?

- \quad Test 3

1 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x-2 f(y))=x f(y)-y f(x)+g(x)
$$

for all real x, y
2 Given a graph with $n \geq 4$ vertices. It is known that for any two of vertices there is a vertex connected with none of these two vertices.
Find the greatest possible number of the edges in the graph.
3 Let D, E, F denote the tangent points of the incircle of $A B C$ with sides $B C, A C, A B$ respectively. Let M be the midpoint of the segment $E F$. Let L be the intersection point of the circle passing through D, M, F and the segment $A B, K$ be the intersection point of the circle passing through D, M, E and the segment $A C$.
Prove that the circle passing through A, K, L touches the line $B C$

- \quad Test 4

1 Given real numbers a, b, c, d such that $\sin a+b>\sin c+d, a+\sin b>c+\sin d$, prove that $a+b>c+d$

2 A point A_{1} is marked inside an acute non-isosceles triangle $A B C$ such that $\angle A_{1} A B=\angle A_{1} B C$ and $\angle A_{1} A C=\angle A_{1} C B$. Points B_{1} and C_{1} are defined same way. Let G be the gravity center if the triangle $A B C$.
Prove that the points A_{1}, B_{1}, C_{1}, G are concyclic.
3 Solve the equation $2^{a}-5^{b}=3$ in positive integers a, b.

- \quad Test 5

1 Let $A B C$ be an acute triangle with orthocenter H. Let G be the point such that the quadrilateral $A B G H$ is a parallelogram. Let I be the point on the line $G H$ such that $A C$ bisects $H I$. Suppose that the line $A C$ intersects the circumcircle of the triangle $G C I$ at C and J. Prove that $I J=$ $A H$.

2 Suppose that a sequence a_{1}, a_{2}, \ldots of positive real numbers satisfies

$$
a_{k+1} \geq \frac{k a_{k}}{a_{k}^{2}+(k-1)}
$$

for every positive integer k. Prove that $a_{1}+a_{2}+\ldots+a_{n} \geq n$ for every $n \geq 2$.
$3 \quad$ Let S be a nonempty set of positive integers. We say that a positive integer n is clean if it has a unique representation as a sum of an odd number of distinct elements from S. Prove that there exist infinitely many positive integers that are not clean.

- \quad Test 6

1 a) Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
f(x-f(y))=f(f(x))-f(y)-1
$$

holds for all $x, y \in \mathbb{Z}$. (It is 2015 IMO Shortlist A2 (https : //artof problemsolving. com/community/ c6h1268817p6621849))
b) The same question for if

$$
f(x-f(y))=f(f(x))-f(y)-2
$$

for all integers x, y
2 Points B_{1} and C_{1} are marked respectively on the sides $A B$ and $A C$ of an acute isosceles triangle $A B C(A B=A C)$ such that $B B_{1}=A C_{1}$. The points B, C and S lie in the same halfplane with respect to the line $B_{1} C_{1}$ so that $\angle S B_{1} C_{1}=\angle S C_{1} B_{1}=\angle B A C$ Prove that B, C, S are colinear if and only if the triangle $A B C$ is equilateral.
$3 \quad$ Let a and b be positive integers such that $a!+b$! divides $a!b!$. Prove that $3 a \geq 2 b+2$.

- \quad Test 7

1 Determine all positive integers M such that the sequence $a_{0}, a_{1}, a_{2}, \cdots$ defined by

$$
a_{0}=M+\frac{1}{2} \quad \text { and } \quad a_{k+1}=a_{k}\left\lfloor a_{k}\right\rfloor \quad \text { for } k=0,1,2, \cdots
$$

contains at least one integer term.
2 Let $A B C$ be a triangle with $\angle C=90^{\circ}$, and let H be the foot of the altitude from C. A point D is chosen inside the triangle $C B H$ so that $C H$ bisects $A D$. Let P be the intersection point of the lines $B D$ and $C H$. Let ω be the semicircle with diameter $B D$ that meets the segment $C B$ at an interior point. A line through P is tangent to ω at Q. Prove that the lines $C Q$ and $A D$ meet on ω.

3 For a finite set A of positive integers, a partition of A into two disjoint nonempty subsets A_{1} and A_{2} is good if the least common multiple of the elements in A_{1} is equal to the greatest common divisor of the elements in A_{2}. Determine the minimum value of n such that there exists a set of n positive integers with exactly 2015 good partitions.

- \quad Test 8

1 There are $n \geq 1$ cities on a horizontal line. Each city is guarded by a pair of stationary elephants, one just to the left and one just ot the right of the city, and facing away from it. The $2 n$ elephants are of different sizes. If an elephant walks forward, it will knock aside any elephant that it approaches from behind, and in face-to-face meeting, the smaller elephant will be knocked aside. A moving elephant will keep walking in the same direction until it is knocked aside.
Show that there is a unique city with the property that if any of the other cities orders its elephants to walk, then that city will not be invaded by an elephant.
IMO 2015, Shortlist C1 (https://artofproblemsolving.com/community/c6h1268873p6622370), modified by G. Smith

2 Let K and L be the centers of the excircles of a non-isosceles triangle $A B C$ opposite B and C respectively. Let B_{1} and C_{1} be the midpoints of the sides $A C$ and $A B$ respectively Let M and N be symmetric to B and C about B_{1} and C_{1} respectively.
Prove that the lines $K M$ and $L N$ meet on $B C$.
$3 \quad$ Let m and n be positive integers such that $m>n$. Define $x_{k}=\frac{m+k}{n+k}$ for $k=1,2, \ldots, n+1$. Prove that if all the numbers $x_{1}, x_{2}, \ldots, x_{n+1}$ are integers, then $x_{1} x_{2} \ldots x_{n+1}-1$ is divisible by an odd prime.

