Art of Problem Solving

AoPS Community

2019 Romanian Master of Mathematics Shortlist

RMM 2019 Shortlist

www.artofproblemsolving.com/community/c1205070
by parmenides51, Physicsknight, Vlados021, huricane

- Algebra

A1 Determine all the functions $f: \mathbb{R} \mapsto \mathbb{R}$ satisfies the equation $f\left(a^{2}+a b+f\left(b^{2}\right)\right)=a f(b)+b^{2}+$ $f\left(a^{2}\right) \forall a, b \in \mathbb{R}$

A2 Given a positive integer n, determine the maximal constant C_{n} satisfying the following condition: for any partition of the set $\{1,2, \ldots, 2 n\}$ into two n-element subsets A and B, there exist labellings $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ of A and B, respectively, such that

$$
\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}+\ldots+\left(a_{n}-b_{n}\right)^{2} \geq C_{n} .
$$

(B. Serankou, M. Karpuk)

- Combinatorics

C1 Let k and N be integers such that $k>1$ and $N>2 k+1$. A number of N persons sit around the Round Table, equally spaced. Each person is either a knight (always telling the truth) or a liar (who always lies). Each person sees the nearest k persons clockwise, and the nearest k persons anticlockwise. Each person says: "I see equally many knights to my left and to my right." Establish, in terms of k and N, whether the persons around the Table are necessarily all knights.
Sergey Berlov, Russia
C2 Fix an integer $n \geq 2$. A fairy chess piece leopard may move one cell up, or one cell to the right, or one cell diagonally down-left. A leopard is placed onto some cell of a $3 n \times 3 n$ chequer board. The leopard makes several moves, never visiting a cell twice, and comes back to the starting cell. Determine the largest possible number of moves the leopard could have made.
Dmitry Khramtsov, Russia
C3 Fix an odd integer $n>1$. For a permutation p of the set $\{1,2, \ldots, n\}$, let S be the number of pairs of indices $(i, j), 1 \leq i \leq j \leq n$, for which $p_{i}+p_{i+1}+\ldots+p_{j}$ is divisible by n. Determine the maximum possible value of S.

Croatia

- Geometry

AoPS Community

2019 Romanian Master of Mathematics Shortlist

G1 Let $B M$ be a median in an acute-angled triangle $A B C$. A point K is chosen on the line through C tangent to the circumcircle of $\triangle B M C$ so that $\angle K B C=90^{\circ}$. The segments $A K$ and $B M$ meet at J. Prove that the circumcenter of $\triangle B J K$ lies on the line $A C$.

Aleksandr Kuznetsov, Russia
G2 Let $A B C$ be an acute-angled triangle. The line through C perpendicular to $A C$ meets the external angle bisector of $\angle A B C$ at D. Let H be the foot of the perpendicular from D onto $B C$. The point K is chosen on $A B$ so that $K H \| A C$. Let M be the midpoint of $A K$. Prove that $M C=M B+B H$.

Giorgi Arabidze, Georgia,
G3 Let $A B C$ be an acute-angled triangle with $A B \neq A C$, and let I and O be its incenter and circumcenter, respectively. Let the incircle touch $B C, C A$ and $A B$ at D, E and F, respectively. Assume that the line through I parallel to $E F$, the line through D parallel to $A O$, and the altitude from A are concurrent. Prove that the concurrency point is the orthocenter of the triangle $A B C$.

Petar Nizic-Nikolac, Croatia
G4 ver.I Let Ω be the circumcircle of an acute-angled triangle $A B C$. Let D be the midpoint of the minor arc $A B$ of Ω. A circle ω centered at D is tangent to $A B$ at E. The tangents to ω through C meet the segment $A B$ at K and L, where K lies on the segment $A L$. A circle Ω_{1} is tangent to the segments $A L, C L$, and also to Ω at point M. Similarly, a circle Ω_{2} is tangent to the segments $B K, C K$, and also to Ω at point N. The lines $L M$ and $K N$ meet at P. Prove that $\angle K C E=\angle L C P$.

Poland
G4 ver.II Let Ω be the circumcircle of an acute-angled triangle $A B C$. A point D is chosen on the internal bisector of $\angle A C B$ so that the points D and C are separated by $A B$. A circle ω centered at D is tangent to the segment $A B$ at E. The tangents to ω through C meet the segment $A B$ at K and L, where K lies on the segment $A L$. A circle Ω_{1} is tangent to the segments $A L, C L$, and also to Ω at point M. Similarly, a circle Ω_{2} is tangent to the segments $B K, C K$, and also to Ω at point N. The lines $L M$ and $K N$ meet at P. Prove that $\angle K C E=\angle L C P$.

Poland
G5 A quadrilateral $A B C D$ is circumscribed about a circle with center I. A point $P \neq I$ is chosen inside $A B C D$ so that the triangles $P A B, P B C, P C D$, and $P D A$ have equal perimeters. A circle Γ centered at P meets the rays $P A, P B, P C$, and $P D$ at A_{1}, B_{1}, C_{1}, and D_{1}, respectively. Prove that the lines $P I, A_{1} C_{1}$, and $B_{1} D_{1}$ are concurrent.
Ankan Bhattacharya, USA

- Number Theory

N1 Let p and q be relatively prime positive odd integers such that $1<p<q$. Let A be a set of pairs of integers (a, b), where $0 \leq a \leq p-1,0 \leq b \leq q-1$, containing exactly one pair from each of the sets

$$
\{(a, b),(a+1, b+1)\},\{(a, q-1),(a+1,0)\},\{(p-1, b),(0, b+1)\}
$$

whenever $0 \leq a \leq p-2$ and $0 \leq b \leq q-2$. Show that A contains at least $(p-1)(q+1) / 8$ pairs whose entries are both even.

Agnijo Banerjee and Joe Benton, United Kingdom

- \quad Original Day 2 problems (removed due to leak)
original P4 Let there be an equilateral triangle $A B C$ and a point P in its plane such that $A P<B P<$ $C P$. Suppose that the lengths of segments $A P, B P$ and $C P$ uniquely determine the side of $A B C$. Prove that P lies on the circumcircle of triangle $A B C$.
original P5 Two ants are moving along the edges of a convex polyhedron. The route of every ant ends in its starting point, so that one ant does not pass through the same point twice along its way. On every face F of the polyhedron are written the number of edges of F belonging to the route of the first ant and the number of edges of F belonging to the route of the second ant. Is there a polyhedron and a pair of routes described as above, such that only one face contains a pair of distinct numbers?

Proposed by Nikolai Beluhov
original P6 Let $P(x)$ be a nonconstant complex coefficient polynomial and let $Q(x, y)=P(x)-P(y)$. Suppose that polynomial $Q(x, y)$ has exactly k linear factors unproportional two by tow (without counting repetitons). Let $R(x, y)$ be factor of $Q(x, y)$ of degree strictly smaller than k. Prove that $R(x, y)$ is a product of linear polynomials.
Note: The degree of nontrivial polynomial $\sum_{m} \sum_{n} c_{m, n} x^{m} y^{n}$ is the maximum of $m+n$ along all nonzero coefficients $c_{m, n}$. Two polynomials are proportional if one of them is the other times a complex constant.

Proposed by Navid Safaie

