Art of Problem Solving

AoPS Community

USOMO 2020

www.artofproblemsolving.com/community/c1209089
by TwinPrime, realquarterb, AOPS12142015, tastymath75025, franchester, tworigami

Day 1 June 19

1 Let $A B C$ be a fixed acute triangle inscribed in a circle ω with center O. A variable point X is chosen on minor arc $A B$ of ω, and segments $C X$ and $A B$ meet at D. Denote by O_{1} and O_{2} the circumcenters of triangles $A D X$ and $B D X$, respectively. Determine all points X for which the area of triangle $O O_{1} O_{2}$ is minimized.

Proposed by Zuming Feng
2 An empty $2020 \times 2020 \times 2020$ cube is given, and a 2020×2020 grid of square unit cells is drawn on each of its six faces. A beam is a $1 \times 1 \times 2020$ rectangular prism. Several beams are placed inside the cube subject to the following conditions:
-The two 1×1 faces of each beam coincide with unit cells lying on opposite faces of the cube. (Hence, there are $3 \cdot 2020^{2}$ possible positions for a beam.)
-No two beams have intersecting interiors.
-The interiors of each of the four 1×2020 faces of each beam touch either a face of the cube or the interior of the face of another beam.

What is the smallest positive number of beams that can be placed to satisfy these conditions?
Proposed by Alex Zhai
3 Let p be an odd prime. An integer x is called a quadratic non-residue if p does not divide $x-t^{2}$ for any integer t.

Denote by A the set of all integers a such that $1 \leq a<p$, and both a and $4-a$ are quadratic non-residues. Calculate the remainder when the product of the elements of A is divided by p.
Proposed by Richard Stong and Toni Bluher
Day 2 June 20
4 Suppose that $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{100}, b_{100}\right)$ are distinct ordered pairs of nonnegative integers. Let N denote the number of pairs of integers (i, j) satisfying $1 \leq i<j \leq 100$ and $\left|a_{i} b_{j}-a_{j} b_{i}\right|=$ 1. Determine the largest possible value of N over all possible choices of the 100 ordered pairs. Proposed by Ankan Bhattacharya
$5 \quad$ A finite set S of points in the coordinate plane is called overdetermined if $|S| \geq 2$ and there exists a nonzero polynomial $P(t)$, with real coefficients and of degree at most $|S|-2$, satisfying $P(x)=y$ for every point $(x, y) \in S$.

For each integer $n \geq 2$, find the largest integer k (in terms of n) such that there exists a set of n distinct points that is not overdetermined, but has k overdetermined subsets.
Proposed by Carl Schildkraut
6 Let $n \geq 2$ be an integer. Let $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$ and $y_{1} \geq y_{2} \geq \ldots \geq y_{n}$ be $2 n$ real numbers such that

$$
\begin{aligned}
& \quad 0=x_{1}+x_{2}+\ldots+x_{n}=y_{1}+y_{2}+\ldots+y_{n} \\
& \text { and } 1=x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=y_{1}^{2}+y_{2}^{2}+\ldots+y_{n}^{2} .
\end{aligned}
$$

Prove that

$$
\sum_{i=1}^{n}\left(x_{i} y_{i}-x_{i} y_{n+1-i}\right) \geq \frac{2}{\sqrt{n-1}}
$$

Proposed by David Speyer and Kiran Kedlaya

