

AoPS Community

2020 Bulgaria National Olympiad

www.artofproblemsolving.com/community/c1216335 by H.M-Deadline, VicKmath7

– Day 1	
---------	--

- **P1** On the sides of $\triangle ABC$ points $P, Q \in AB$ (*P* is between *A* and *Q*) and $R \in BC$ are chosen. The points *M* and *N* are defined as the intersection point of *AR* with the segments *CP* and *CQ*, respectively. If BC = BQ, CP = AP, CR = CN and $\angle BPC = \angle CRA$, prove that MP + NQ = BR.
- **P2** Let b_1, \ldots, b_n be nonnegative integers with sum 2 and a_0, a_1, \ldots, a_n be real numbers such that $a_0 = a_n = 0$ and $|a_i a_{i-1}| \le b_i$ for each $i = 1, \ldots, n$. Prove that

$$\sum_{i=1}^{n} (a_i + a_{i-1})b_i \le 2$$

I believe that the original problem was for nonnegative real numbers and it was a typo on the version of the exam paper we had but I'm not sure the inequality would hold

Р3	Let $a_1 \in \mathbb{Z}$, $a_2 = a_1^2 - a_1 - 1$,, $a_{n+1} = a_n^2 - a_n - 1$. Prove that a_{n+1} and $2n + 1$ are coprime.
-	Day 2
Ρ4	Are there positive integers $m > 4$ and n , such that a) $\binom{m}{3} = n^2$; b) $\binom{m}{4} = n^2 + 9$?
Ρ5	There are n points in the plane, some of which are connected by segments. Some of the segments are colored in white, while the others are colored black in such a way that there exist a completely white as well as a completely black closed broken line of segments, each of them passing through every one of the n points exactly once. It is known that the segments AB and BC are white. Prove that it is possible to recolor the segments in red and blue in such a way that AB and BC are recolored as red, meaning that recoloring every white as red and every black as blue is not acceptable, and that there exist a completely red as well as a completely blue closed broken line of segments, each of them passing through every one of the n points exactly once.

P6 Let f(x) be a nonconstant real polynomial. The sequence $\{a_i\}_{i=1}^{\infty}$ of real numbers is strictly increasing and unbounded, as

 $a_{i+1} < a_i + 2020.$

AoPS Community

2020 Bulgaria National Olympiad

The integers $\lfloor |f(a_1)| \rfloor$, $\lfloor |f(a_2)| \rfloor$, $\lfloor |f(a_3)| \rfloor$, ... are written consecutively in such a way that their digits form an infinite sequence of digits $\{s_k\}_{k=1}^{\infty}$ (here $s_k \in \{0, 1, \ldots, 9\}$). If $n \in \mathbb{N}$, prove that among the numbers $\overline{s_{n(k-1)+1}s_{n(k-1)+2}\cdots s_{nk}}$, where $k \in \mathbb{N}$, all *n*-digit numbers appear.

AoPS Online AoPS Academy AoPS Content

Art of Problem Solving is an ACS WASC Accredited School.