## AoPS Community

www.artofproblemsolving.com/community/c1216335
by H.M-Deadline, VicKmath7

- $\quad$ Day 1

P1 On the sides of $\triangle A B C$ points $P, Q \in A B$ ( $P$ is between $A$ and $Q$ ) and $R \in B C$ are chosen. The points $M$ and $N$ are defined as the intersection point of $A R$ with the segments $C P$ and $C Q$, respectively. If $B C=B Q, C P=A P, C R=C N$ and $\angle B P C=\angle C R A$, prove that $M P+N Q=$ $B R$.

P2 Let $b_{1}, \ldots, b_{n}$ be nonnegative integers with sum 2 and $a_{0}, a_{1}, \ldots, a_{n}$ be real numbers such that $a_{0}=a_{n}=0$ and $\left|a_{i}-a_{i-1}\right| \leq b_{i}$ for each $i=1, \ldots, n$. Prove that

$$
\sum_{i=1}^{n}\left(a_{i}+a_{i-1}\right) b_{i} \leq 2
$$

I believe that the original problem was for nonnegative real numbers and it was a typo on the version of the exam paper we had but I'm not sure the inequality would hold

P3 Let $a_{1} \in \mathbb{Z}, a_{2}=a_{1}^{2}-a_{1}-1, \ldots, a_{n+1}=a_{n}^{2}-a_{n}-1$. Prove that $a_{n+1}$ and $2 n+1$ are coprime.

- Day 2

P4 Are there positive integers $m>4$ and $n$, such that
a) $\binom{m}{3}=n^{2}$;
b) $\binom{m}{4}=n^{2}+9$ ?

P5 There are $n$ points in the plane, some of which are connected by segments.
Some of the segments are colored in white, while the others are colored black in such a way that there exist a completely white as well as a completely black closed broken line of segments, each of them passing through every one of the $n$ points exactly once.
It is known that the segments $A B$ and $B C$ are white. Prove that it is possible to recolor the segments in red and blue in such a way that $A B$ and $B C$ are recolored as red, meaning that recoloring every white as red and every black as blue is not acceptable, and that there exist a completely red as well as a completely blue closed broken line of segments, each of them passing through every one of the $n$ points exactly once.

P6 Let $f(x)$ be a nonconstant real polynomial. The sequence $\left\{a_{i}\right\}_{i=1}^{\infty}$ of real numbers is strictly increasing and unbounded, as

$$
a_{i+1}<a_{i}+2020
$$

The integers $\left\lfloor\left|f\left(a_{1}\right)\right|\right\rfloor,\left\lfloor\left|f\left(a_{2}\right)\right|\right\rfloor,\left\lfloor\left|f\left(a_{3}\right)\right|\right\rfloor, \ldots$ are written consecutively in such a way that their digits form an infinite sequence of digits $\left\{s_{k}\right\}_{k=1}^{\infty}$ (here $s_{k} \in\{0,1, \ldots, 9\}$ ). If $n \in \mathbb{N}$, prove that among the numbers $\overline{s_{n(k-1)+1} s_{n(k-1)+2} \cdots s_{n k}}$, where $k \in \mathbb{N}$, all $n$-digit numbers appear.

