AoPS Community

Final Round - Korea 2020

www.artofproblemsolving.com/community/c1228160
by mcyoder, Iminsl

Day 1

P1 Let $A B C D$ be an isosceles trapezoid such that $A B \| C D$ and $\overline{A D}=\overline{B C}, \overline{A B}>\overline{C D}$. Let E be a point such that $\overline{E C}=\overline{A C}$ and $E C \perp B C$, and $\angle A C E<90^{\circ}$. Let Γ be a circle with center D and radius $D A$, and Ω be the circumcircle of triangle $A E B$. Suppose that Γ meets Ω again at $F(\neq A)$, and let G be a point on Γ such that $\overline{B F}=\overline{B G}$.
Prove that the lines $E G, B D$ meet on Ω.
P2 There are 2020 groups, each of which consists of a boy and a girl, such that each student is contained in exactly one group. Suppose that the students shook hands so that the following conditions are satisfied:

- boys didn't shake hands with boys, and girls didn't shake hands with girls;
- in each group, the boy and girl had shake hands exactly once;
- any boy and girl, each in different groups, didn't shake hands more than once;
- for every four students in two different groups, there are at least three handshakes.

Prove that one can pick 4038 students and arrange them at a circular table so that every two adjacent students had shake hands.

P3 Find all $f: \mathbb{Q}_{+} \rightarrow \mathbb{R}$ such that

$$
f(x)+f(y)+f(z)=1
$$

holds for every positive rationals x, y, z satisfying $x+y+z+1=4 x y z$.

Day 2

P4 Do there exist two positive reals α, β such that each positive integer appears exactly once in the following sequence?

$$
2020,[\alpha],[\beta], 4040,[2 \alpha],[2 \beta], 6060,[3 \alpha],[3 \beta], \cdots
$$

If so, determine all such pairs; if not, prove that it is impossible.
P5 Let $A B C$ be an acute triangle such that $\overline{A B}=\overline{A C}$. Let M, L, N be the midpoints of segment $B C, A M, A C$, respectively. The circumcircle of triangle $A M C$, denoted by Ω, meets segment $A B$ at $P(\neq A)$, and the segment $B L$ at Q. Let O be the circumcenter of triangle $B Q C$. Suppose
that the lines $A C$ and $P Q$ meet at $X, O B$ and $L N$ meet at Y, and $B Q$ and $C O$ meets at Z. Prove that the points X, Y, Z are collinear.

P6 Find all positive integers n such that $6\left(n^{4}-1\right)$ is a square of an integer.

