

AoPS Community

Final Round - Korea 2020

www.artofproblemsolving.com/community/c1228160 by mcyoder, Iminsl

Day	1
P1	Let $ABCD$ be an isosceles trapezoid such that $AB \parallel CD$ and $\overline{AD} = \overline{BC}, \overline{AB} > \overline{CD}$. Let E be a point such that $\overline{EC} = \overline{AC}$ and $EC \perp BC$, and $\angle ACE < 90^{\circ}$. Let Γ be a circle with center D and radius DA , and Ω be the circumcircle of triangle AEB . Suppose that Γ meets Ω again at $F(\neq A)$, and let G be a point on Γ such that $\overline{BF} = \overline{BG}$. Prove that the lines EG, BD meet on Ω .
P2	There are 2020 groups, each of which consists of a boy and a girl, such that each student is contained in exactly one group. Suppose that the students shook hands so that the following conditions are satisfied:
	- boys didn't shake hands with boys, and girls didn't shake hands with girls; - in each group, the boy and girl had shake hands exactly once; - any boy and girl, each in different groups, didn't shake hands more than once; - for every four students in two different groups, there are at least three handshakes.
	Prove that one can pick 4038 students and arrange them at a circular table so that every two adjacent students had shake hands.
P3	Find all $f : \mathbb{Q}_+ \to \mathbb{R}$ such that $f(x) + f(y) + f(z) = 1$
	holds for every positive rationals x, y, z satisfying $x + y + z + 1 = 4xyz$.
Day	2
P4	Do there exist two positive reals α, β such that each positive integer appears exactly once in the following sequence?
	$2020, [\alpha], [\beta], 4040, [2\alpha], [2\beta], 6060, [3\alpha], [3\beta], \cdots$
	If so, determine all such pairs; if not, prove that it is impossible.
Р5	Let ABC be an acute triangle such that $\overline{AB} = \overline{AC}$. Let M, L, N be the midpoints of segment BC, AM, AC , respectively. The circumcircle of triangle AMC , denoted by Ω , meets segment AB at $P(\neq A)$, and the segment BL at Q . Let O be the circumcenter of triangle BQC . Suppose

AoPS Community

2020 Korea - Final Round

that the lines AC and PQ meet at X, OB and LN meet at Y, and BQ and CO meets at Z. Prove that the points X, Y, Z are collinear.

P6 Find all positive integers *n* such that $6(n^4 - 1)$ is a square of an integer.

Act of Problem Solving is an ACS WASC Accredited School.