AoPS Community

Turkey EGMO TST 2019

www.artofproblemsolving.com/community/c1231414
by electrovector, AlastorMoody
$1 \quad A_{1}, A_{2}, \ldots, A_{n}$ are the subsets of $|S|=2019$ such that union of any three of them gives S but if we combine two of subsets it doesn't give us S. Find the maximum value of n.

2 Let a, b, c be positive reals such that $a b c=1, a+b+c=5$ and

$$
(a b+2 a+2 b-9)(b c+2 b+2 c-9)(c a+2 c+2 a-9) \geq 0
$$

Find the minimum value of

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}
$$

3 Let ω be the circumcircle of $\triangle A B C$, where $|A B|=|A C|$. Let D be any point on the minor arc $A C$. Let E be the reflection of point B in line $A D$. Let F be the intersection of ω and line $B E$ and Let K be the intersection of line $A C$ and the tangent at F. If line $A B$ intersects line $F D$ at L, Show that K, L, E are collinear points

4 Let $\sigma(n)$ shows the number of positive divisors of n. Let $s(n)$ be the number of positive divisors of $n+1$ such that for every divisor $a, a-1$ is also a divisor of n. Find the maximum value of $2 s(n)-\sigma(n)$.
$5 \quad$ Let D be the midpoint of $\overline{B C}$ in $\triangle A B C$. Let P be any point on $\overline{A D}$. If the internal angle bisector of $\angle A B P$ and $\angle A C P$ intersect at Q. Prove that, if $B Q \perp Q C$, then Q lies on $A D$

6 There are k piles and there are 2019 stones totally. In every move we split a pile into two or remove one pile. Using finite moves we can reach conclusion that there are k piles left and all of them contain different number of stonws. Find the maximum of k.

