

AoPS Community

2020 IMEO

International Mathematical Excellence Olympiad

www.artofproblemsolving.com/community/c1231578 by MS_Kekas

– Day 1

Problem 1 Let *ABC* be a triangle and *A'* be the reflection of *A* about *BC*. Let *P* and *Q* be points on *AB* and *AC*, respectively, such that PA' = PC and QA' = QB. Prove that the perpendicular from *A'* to *PQ* passes through the circumcenter of $\triangle ABC$.

Fedir Yudin

Problem 2 You are given an odd number $n \ge 3$. For every pair of integers (i, j) with $1 \le i \le j \le n$ there is a domino, with *i* written on one its end and with *j* written on another (there are $\frac{n(n+1)}{2}$ domino overall). Amin took this dominos and started to put them in a row so that numbers on the adjacent sides of the dominos are equal. He has put *k* dominos in this way, got bored and went away. After this Anton came to see this *k* dominos, and he realized that he can't put all the remaining dominos in this row by the rules. For which smallest value of *k* is this possible?

Oleksii Masalitin

Problem 3 Find all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that for all positive real x, y holds

$$xf(x) + yf(y) = (x+y)f\left(\frac{x^2+y^2}{x+y}\right)$$

Fedir Yudin

– Day 2

Problem 4 Anna and Ben are playing with a permutation p of length 2020, initially $p_i = 2021 - i$ for $1 \le i \le 2020$. Anna has power A, and Ben has power B. Players are moving in turns, with Anna moving first.

In his turn player with power *P* can choose any *P* elements of the permutation and rearrange them in the way he/she wants.

Ben wants to sort the permutation, and Anna wants to not let this happen. Determine if Ben can make sure that the permutation will be sorted (of form $p_i = i$ for $1 \le i \le 2020$) in finitely many turns, if

a) A = 1000, B = 1000

b) A = 1000, B = 1001

AoPS Community

c) A = 1000, B = 1002

Anton Trygub

Problem 5 For a positive integer n with prime factorization $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ let's define $\lambda(n) = (-1)^{\alpha_1 + \alpha_2 + \cdots + \alpha_k}$.

Define L(n) as sum of $\lambda(x)$ over all integers from 1 to n.

Define K(n) as sum of $\lambda(x)$ over all **composite** integers from 1 to n.

For some N > 1, we know, that for every $2 \le n \le N$, $L(n) \le 0$.

Prove that for this N, for every $2 \le n \le N$, $K(n) \ge 0$.

Mykhailo Shtandenko

Problem 6 Let O, I, and ω be the circumcenter, the incenter, and the incircle of nonequilateral $\triangle ABC$. Let ω_A be the unique circle tangent to AB and AC, such that the common chord of ω_A and ω passes through the center of ω_A . Let O_A be the center of ω_A . Define $\omega_B, O_B, \omega_C, O_C$ similarly. If ω touches BC, CA, AB at D, E, F respectively, prove that the perpendiculars from D, E, F to O_BO_C, O_CO_A, O_AO_B are concurrent on the line OI.

Pitchayut Saengrungkongka

AoPS Online 🕸 AoPS Academy 🕸 AoPS &