Art of Problem Solving

International Mathematical Excellence Olympiad

www.artofproblemsolving.com/community/c1231578
by MS_Kekas

- Day 1

Problem 1 Let $A B C$ be a triangle and A^{\prime} be the reflection of A about $B C$. Let P and Q be points on $A B$ and $A C$, respectively, such that $P A^{\prime}=P C$ and $Q A^{\prime}=Q B$. Prove that the perpendicular from A^{\prime} to $P Q$ passes through the circumcenter of $\triangle A B C$.

Fedir Yudin
Problem 2 You are given an odd number $n \geq 3$. For every pair of integers (i, j) with $1 \leq i \leq j \leq n$ there is a domino, with i written on one its end and with j written on another (there are $\frac{n(n+1)}{2}$ domino overall). Amin took this dominos and started to put them in a row so that numbers on the adjacent sides of the dominos are equal. He has put k dominos in this way, got bored and went away. After this Anton came to see this k dominos, and he realized that he can't put all the remaining dominos in this row by the rules. For which smallest value of k is this possible?
Oleksii Masalitin
Problem 3 Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that for all positive real x, y holds

$$
x f(x)+y f(y)=(x+y) f\left(\frac{x^{2}+y^{2}}{x+y}\right)
$$

Fedir Yudin

- Day 2

Problem 4 Anna and Ben are playing with a permutation p of length 2020, initially $p_{i}=2021-i$ for $1 \leq i \leq 2020$. Anna has power A, and Ben has power B. Players are moving in turns, with Anna moving first.

In his turn player with power P can choose any P elements of the permutation and rearrange them in the way he/she wants.

Ben wants to sort the permutation, and Anna wants to not let this happen. Determine if Ben can make sure that the permutation will be sorted (of form $p_{i}=i$ for $1 \leq i \leq 2020$) in finitely many turns, if
a) $A=1000, B=1000$
b) $A=1000, B=1001$
c) $A=1000, B=1002$

Anton Trygub

Problem 5 For a positive integer n with prime factorization $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ let's define $\lambda(n)=$ $(-1)^{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}}$.
Define $L(n)$ as sum of $\lambda(x)$ over all integers from 1 to n.
Define $K(n)$ as sum of $\lambda(x)$ over all composite integers from 1 to n.
For some $N>1$, we know, that for every $2 \leq n \leq N, L(n) \leq 0$.
Prove that for this N, for every $2 \leq n \leq N, K(n) \geq 0$.
Mykhailo Shtandenko
Problem 6 Let O, I, and ω be the circumcenter, the incenter, and the incircle of nonequilateral $\triangle A B C$. Let ω_{A} be the unique circle tangent to $A B$ and $A C$, such that the common chord of ω_{A} and ω passes through the center of ω_{A}. Let O_{A} be the center of ω_{A}. Define $\omega_{B}, O_{B}, \omega_{C}, O_{C}$ similarly. If ω touches $B C, C A, A B$ at D, E, F respectively, prove that the perpendiculars from D, E, F to $O_{B} O_{C}, O_{C} O_{A}, O_{A} O_{B}$ are concurrent on the line $O I$.
Pitchayut Saengrungkongka

