AoPS Community

2020 Canadian Junior Mathematical Olympiad

CJMO - Canadian Junior Mathematical Olympiad 2020

www.artofproblemsolving.com/community/c1231800
by parmenides51, SpecialBeing2017

1 Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of positive real numbers that satisfies $a_{1}=1$ and $a_{n+1}^{2}+a_{n+1}=$ a_{n} for every natural number n. Prove that $a_{n} \geq \frac{1}{n}$ for every natural number n.

2 Ziquan makes a drawing in the plane for art class. He starts by placing his pen at the origin, and draws a series of line segments, such that the $n^{\text {th }}$ line segment has length n. He is not allowed to lift his pen, so that the end of the $n^{t h}$ segment is the start of the $(n+1)^{t h}$ segment. Line segments drawn are allowed to intersect and even overlap previously drawn segments. After drawing a finite number of line segments, Ziquan stops and hands in his drawing to his art teacher. He passes the course if the drawing he hands in is an N by N square, for some positive integer N, and he fails the course otherwise. Is it possible for Ziquan to pass the course?

- \quad those were also the first CMO problems

3 There are $n \geq 3$ distinct positive real numbers. Show that there are at most $n-2$ different integer power of three that can be written as the sum of three distinct elements from these n numbers.
$4 \quad A B C D$ is a fixed rhombus. Segment $P Q$ is tangent to the inscribed circle of $A B C D$, where P is on side $A B, Q$ is on side $A D$. Show that, when segment $P Q$ is moving, the area of $\triangle C P Q$ is a constant.
$5 \quad$ There are finite many coins in Davids purse. The values of these coins are pair wisely distinct positive integers. Is that possible to make such a purse, such that David has exactly 2020 different ways to select the coins in his purse and the sum of these selected coins is 2020 ?

