Art of Problem Solving

AoPS Community

Estonia Team Selection Test 2016

www.artofproblemsolving.com/community/c1237820
by parmenides51

- Day 1

1 There are k heaps on the table, each containing a different positive number of stones. Juri and Mari make moves alternatingly, Juri starts. On each move, the player making the move has to pick a heap and remove one or more stones in it from the table; in addition, the player is allowed to distribute any number of remaining stones from that heap in any way between other non-empty heaps. The player to remove the last stone from the table wins. For which positive integers k does Juri have a winning strategy for any initial state that satisfies the conditions?

2 Let p be a prime number. Find all triples (a, b, c) of integers (not necessarily positive) such that $a^{b} b^{c} c^{a}=p$.

3 Find all functions $f: R \rightarrow R$ satisfying the equality $f\left(2^{x}+2 y\right)=2^{y} f(f(x)) f(y)$ for every $x, y \in R$.

- Day 2

4 Prove that for any positive integer $n \geq, 2 \cdot \sqrt{3} \cdot \sqrt[3]{4} \ldots \sqrt[n-1]{n}>n$
5 Let O be the circumcentre of the acute triangle $A B C$. Let c_{1} and c_{2} be the circumcircles of triangles $A B O$ and $A C O$. Let P and Q be points on c_{1} and c_{2} respectively, such that OP is a diameter of c_{1} and $O Q$ is a diameter of c_{2}. Let T be the intesection of the tangent to c_{1} at P and the tangent to c_{2} at Q. Let D be the second intersection of the line $A C$ and the circle c_{1}. Prove that the points D, O and T are collinear
$6 \quad$ A circle is divided into arcs of equal size by n points ($n \geq 1$). For any positive integer x, let $P_{n}(x)$ denote the number of possibilities for colouring all those points, using colours from x given colours, so that any rotation of the colouring by $i \cdot \frac{360^{\circ}}{n}$, where i is a positive integer less than n, gives a colouring that differs from the original in at least one point. Prove that the function $P_{n}(x)$ is a polynomial with respect to x.

- Day 3

7 On the sides $A B, B C$ and $C A$ of triangle $A B C$, points L, M and N are chosen, respectively, such that the lines $C L, A M$ and $B N$ intersect at a common point O inside the triangle and the
quadrilaterals $A L O N, B M O L$ and $C N O M$ have incircles. Prove that

$$
\frac{1}{A L \cdot B M}+\frac{1}{B M \cdot C N}+\frac{1}{C N \cdot A L}=\frac{1}{A N \cdot B L}+\frac{1}{B L \cdot C M}+\frac{1}{C M \cdot A N}
$$

8 Let x, y and z be positive real numbers such that $x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$. Prove that $x y+y z+z x \geq 3$.

9 Let n be a positive integer such that there exists a positive integer that is less than \sqrt{n} and does not divide n. Let $\left(a_{1}, \ldots, a_{n}\right)$ be an arbitrary permutation of $1, \ldots, n$. Let $a_{i 1}<\ldots<a_{i k}$ be its maximal increasing subsequence and let $a_{j 1}>\ldots>a_{j l}$ be its maximal decreasing subsequence.
Prove that tuples $\left(a_{i 1}, \ldots, a_{i k}\right)$ and $\left(a_{j 1}, \ldots, a_{j l}\right)$ altogether contain at least one number that does not divide n.

- Day 4

10 Let m be an integer, $m \geq 2$. Each student in a school is practising m hobbies the most. Among any m students there exist two students who have a common hobby. Find the smallest number of students for which there must exist a hobby which is practised by at least 3 students .

11 Find all positive integers n such that $\left(n^{2}+11 n-4\right) \cdot n!+33 \cdot 13^{n}+4$ is a perfect square
12 The circles k_{1} and k_{2} intersect at points M and N. The line ℓ intersects with the circle k_{1} at points A and C and with circle k_{2} at points B and D, so that points A, B, C and D are on the line ℓ in that order. Let X be a point on line $M N$ such that the point M is between points X and N. Lines $A X$ and $B M$ intersect at point P and lines $D X$ and $C M$ intersect at point Q. Prove that $P Q \| \ell$.

