

AoPS Community

2016 Estonia Team Selection Test

Estonia Team Selection Test 2016

www.artofproblemsolving.com/community/c1237820 by parmenides51

- Day 1
- 1 There are k heaps on the table, each containing a different positive number of stones. Juri and Mari make moves alternatingly, Juri starts. On each move, the player making the move has to pick a heap and remove one or more stones in it from the table; in addition, the player is allowed to distribute any number of remaining stones from that heap in any way between other non-empty heaps. The player to remove the last stone from the table wins. For which positive integers k does Juri have a winning strategy for any initial state that satisfies the conditions?
- **2** Let *p* be a prime number. Find all triples (a, b, c) of integers (not necessarily positive) such that $a^{b}b^{c}c^{a} = p$.
- **3** Find all functions $f : R \to R$ satisfying the equality $f(2^x + 2y) = 2^y f(f(x))f(y)$ for every $x, y \in R$.
- Day 2
- **4** Prove that for any positive integer $n \ge 2 \cdot \sqrt{3} \cdot \sqrt[3]{4} \dots \sqrt[n-1]{n} > n$
- **5** Let *O* be the circumcentre of the acute triangle *ABC*. Let c_1 and c_2 be the circumcircles of triangles *ABO* and *ACO*. Let *P* and *Q* be points on c_1 and c_2 respectively, such that OP is a diameter of c_1 and OQ is a diameter of c_2 . Let *T* be the intesection of the tangent to c_1 at *P* and the tangent to c_2 at *Q*. Let *D* be the second intersection of the line *AC* and the circle c_1 . Prove that the points *D*, *O* and *T* are collinear
- **6** A circle is divided into arcs of equal size by n points $(n \ge 1)$. For any positive integer x, let $P_n(x)$ denote the number of possibilities for colouring all those points, using colours from x given colours, so that any rotation of the colouring by $i \cdot \frac{360^\circ}{n}$, where i is a positive integer less than n, gives a colouring that differs from the original in at least one point. Prove that the function $P_n(x)$ is a polynomial with respect to x.
- Day 3
- 7 On the sides *AB*, *BC* and *CA* of triangle *ABC*, points *L*, *M* and *N* are chosen, respectively, such that the lines *CL*, *AM* and *BN* intersect at a common point O inside the triangle and the

AoPS Community

2016 Estonia Team Selection Test

quadrilaterals ALON, BMOL and CNOM have incircles. Prove that

$$\frac{1}{AL \cdot BM} + \frac{1}{BM \cdot CN} + \frac{1}{CN \cdot AL} = \frac{1}{AN \cdot BL} + \frac{1}{BL \cdot CM} + \frac{1}{CM \cdot AN}$$

8	Let x, y and z be positive real numbers such the	hat $x+y+z = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$. Prove that $xy+yz+zx \ge 3$.
---	--	---

9 Let *n* be a positive integer such that there exists a positive integer that is less than \sqrt{n} and does not divide *n*. Let $(a_1, ..., a_n)$ be an arbitrary permutation of 1, ..., n. Let $a_{i1} < ... < a_{ik}$ be its maximal increasing subsequence and let $a_{j1} > ... > a_{jl}$ be its maximal decreasing subsequence. Prove that tuples $(a_{i1}, ..., a_{ik})$ and $(a_{j1}, ..., a_{jl})$ altogether contain at least one number that does

not divide *n*.

- Day 4
- **10** Let m be an integer, $m \ge 2$. Each student in a school is practising m hobbies the most. Among any m students there exist two students who have a common hobby. Find the smallest number of students for which there must exist a hobby which is practised by at least 3 students.
- **11** Find all positive integers n such that $(n^2 + 11n 4) \cdot n! + 33 \cdot 13^n + 4$ is a perfect square
- **12** The circles k_1 and k_2 intersect at points M and N. The line ℓ intersects with the circle k_1 at points A and C and with circle k_2 at points B and D, so that points A, B, C and D are on the line ℓ in that order. Let X be a point on line MN such that the point M is between points X and N. Lines AX and BM intersect at point P and lines DX and CM intersect at point Q. Prove that $PQ \parallel \ell$.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱